
Blueprints:
Creating, Describing, and Implementing Designs
for Larger-Scale Software Projects

Stephen Davies, Ph.D.
University of Mary Washington

version 2.3

Blueprints:
Creating, Describing, and Implementing Designs

for Larger-scale Software Projects
version 2.3

Stephen Davies, Ph.D.
Computer Science Department
University of Mary Washington

1

Copyright © 2021 Stephen Davies.

University of Mary Washington
Department of Computer Science
James Farmer Hall
1301 College Avenue
Fredericksburg, VA 22401

Permission is granted to copy, distribute, transmit and adapt this
work under a Creative Commons Attribution-ShareAlike 4.0 Inter-
national License:

http://creativecommons.org/licenses/by-sa/4.0/

If you are interested in distributing a commercial version of this
work, please contact the author at stephen@umw.edu.

The LATEXsource for this book is available from: https://github.
com/rockladyeagles/blueprints.

Cover art copyright © 2020 Stephen Davies. Images courtesy of
photoeverywhere.co.uk and PNGio.com.

http://creativecommons.org/licenses/by-sa/4.0/
https://github.com/rockladyeagles/blueprints
https://github.com/rockladyeagles/blueprints
photoeverywhere.co.uk
PNGio.com

i

Contents

Contents ii

1 Getting off the ground 1

2 The “software crisis” 21

3 Classes and objects 35

4 Memory matters 57

5 Exceptions 79

6 UML class diagrams 89

7 The Singleton pattern 115

8 Java odds ’n’ ends 121

9 UML sequence diagrams 141

10 Persistence and hydration 157

11 Inheritance (1 of 2) 171

12 Inheritance (2 of 2) 187

13 The Factory pattern 207

14 Team software development 215

ii

CONTENTS iii

15 Doing design (1 of 2) 235

16 Doing design (2 of 2) 257

17 Use cases 267

18 Documenting an API 283

Chapter 1

Getting off the ground

Before we begin our study of object-oriented systems proper, we’ll
introduce the command-line toolset we’ll be using to construct our
programs. We’ll take each of the most important tools out of our
toolbox, lay them out before us on a little mat, and learn what
they’re for.

1.1 Why the command line?

Developing software in a command-line environment (sometimes
abbreviated “CLI” for command-line interface, as opposed to a
“GUI1” or graphical user interface) involves typing white text
in little black boxes. It requires memorizing and regurgitating a
variety of obscure commands. It demands exact adherence to an
inconsistent syntax, and exacts heavy penalties for mistakes, all
while providing only a very crude and clunky-looking interface.

It’s natural to wonder why we would want to do this. After all,
aren’t computer systems immeasurably more sophisticated now? If
even end users run fancy, graphical, forgiving apps, shouldn’t com-
puter scientists expect even easier-to-use and sexier-looking stuff?

It may seem so, and in terms of the power the tools provide, we’ll
discover that indeed software developers are aptly equipped. But in

1Commonly pronounced “gooey.”

1

2 CHAPTER 1. GETTING OFF THE GROUND

some ways it’s a false expectation to assume that our toolset would
be as easy to operate as that of an everyday user. After all, which
is easier: to drive a car, or to be a mechanic? Even though I enjoy
cruise control and auto-adjusting seats, I don’t find it strange at all
to learn that mechanics still use socket wrenches to adjust piston
assemblies.

Much of what makes a CLI so powerful is its expressiveness. A
driver can press any of the three or four cruise control functions
the manufacturer provided. But a mechanic can take any of hun-
dreds of tools, tweak dozens of different parts, and combine these
adjustments in uncountable ways. That’s the kind of flexibility the
command line provides.

The difference between a CLI and a GUI is that with the latter, the
user can essentially do only what the tool designer anticipated she
would want to do. There’s no way she can express something that
isn’t one of the tailor-made menu options.

When you use the command line, think of it as composing sentences,
word by word. A GUI comes with a repertoire of standard sentences
you can choose from. That makes it easy to do standard things, and
hard to make silly mistakes. But a CLI, being inherently language-
based, is immeasurably more flexible. You can write any (legal,
grammatically correct) sentence you choose, even one the designers
of the CLI never thought of, and even one that you didn’t know
you’d want to type until a moment ago. The bits and pieces can be
combined in a myriad of ways, just as nouns and verbs can.

There are other reasons as well that many developers live on the
command line. Among them are2:

• Speed. It turns out to be way, way faster to type commands
– in combination with the various shortcuts and recall/edit
operations – than it is to sift through menu options and such
with a mouse. Trust me.

• Remote access. When you’re running programs on your
own device, it’s possible to do it with a GUI. But computer

2Thanks to Ian Finlayson for capturing much of this list.

1.1. WHY THE COMMAND LINE? 3

scientists very often have to connect over the network to dis-
tant machines in order to tell them what to do. Every time
you need to configure a web server, for instance, or update
a publicly-accessible database, or run a time-consuming job
on a parallel cluster, or correct the data on your mobile de-
vice, you need a way to issue commands to another machine
through a very low-bandwidth channel. Opening a command
line “shell” to that remote device is by far the most common
and effective way to do this.

• Scriptability. There’s just no good way to automate a se-
quence of GUI operations. To explain to someone else how
to accomplish something, you have to painfully walk them
through each operation (“go to the Start menu and find Ac-
cessories, then in the Math menu choose Calculator...when it
comes up, right-click in the background and enable Advanced
Options...”) which is tedious and error-prone. It’d be nice if
you could just send them a custom command which would do
all that. As a matter of fact, it would be nice if you could
make a custom command which would do all that, so that
you could execute it many times without rehashing the same
rigmarole. You’ll find that CLIs are eminently automatable
in this way. You can create custom commands called “scripts”
that are combinations of other interacting commands, and in
this way you become master of your whole world.

• Consistency. Graphical user interfaces are more different
from each other than CLIs are. Partly this is because nearly
any CLI you’re likely to use is Unix/Linux-based3, and hence
they all “speak the same language.” It’s great to be able to log
on to different laptops, web servers, your phone, your Kindle,
or a Raspberry Pi and get the same prompt that understands
the same stuff.

3For our purposes, you can consider the terms “Unix” and “Linux” exact
synonyms. The Mac OS X command line (available through the “Terminal”
app) is Unix-based, too. Windows machines aren’t, but programs like “Cygwin”
can be downloaded for free and provide a Linux-like command-line veneer over
the operating system.

4 CHAPTER 1. GETTING OFF THE GROUND

• Stability. CLIs rarely change. When they do, it’s very very
rarely in a non-backwards-compatible way. By contrast, every
time a new graphical user interface is released, you have to
go through a period of hunting around and finding out where
everything is. With Unix/Linux, you can literally run com-
mands that were written last century and they will likely still
work as is.

There’s always a few students who, despite the above benefits, resist
learning this material at first. I get it. It’s like learning a new
language, and the immense effort to understand an alien world sure
doesn’t feel like it’s going to pay off any time soon. All I can say is
that if you’re not convinced it’s worth it, for now just think of it as
something you have to master “just because your professor and the
industry says so.” My hope is that by the end of this course, you’re
pleasantly surprised by seeing some payoff for your hard work.

1.2 The filesystem

Okay. The backdrop for all our use of the Linux command-line
interface is the filesystem.4 Any general-purpose computer, no
matter its architecture or OS, has an area of permanent storage for
user data. Interestingly, and conveniently, all computers organize
their filesystems in pretty much the same way: as a tree of files and
directories. (Windows/Mac users will be familiar with the term
“folder,” which means exactly the same thing as “directory.”) In
what follows, we’ll be using a different syntax (text instead of visual
icons) to work with what is conceptually the same organizational
structure you’re used to on your own computer.

Files and directories

A file is simply any named chunk of stuff on your disk. Images, .mp3
tunes, Word docs, and (importantly) plain text files are all in this
category. On Windows, you’re used to each of these files having a
filesystem “extension” designating its type: “.docx” means a Word

4Often, not always, written as a single word as I have it here.

1.2. THE FILESYSTEM 5

doc, and “.jpg” means an image file, for example. This is sort of
true with Linux, although the rules are a bit looser. Not all files
have extensions at all, and when they do, it’s more a signal that
they’re intended to be treated a certain way than it is a hard-and-
fast requirement.

The most important files you’ll work with in this class will have
a .java extension. These are your Java source files. You’ll also
work with other various supporting files to make all the tools work
correctly. It’s important to realize that a file is fundamentally just
some data, which can theoretically be opened and dealt with by any
program. When we say that HamletPaper.docx “is” a Word doc,
what we really mean is that its data is formatted in a certain way
that the Microsoft Word application expects to see, so it can ren-
der it on the screen for editing. But it is possible to open that
same HamletPaper.docx file with other programs and manipulate
its contents. This may seem sketchy, but it is actually a force for
good.

In particular, you’ll be tempted this semester to think of a .java
file as “a vim file,” in the same way that you may think of an .xls
file as “an Excel file.” I hope to break you of this habit, as you learn
to see a file as text or data that is actually independent of what
kind of program might be used to open and manipulate it.

A directory is a container for files and also other directories. That
last italicized phrase is what gives rise to the overall tree structure
of the filesystem, as discussed in the following section.

By the way, every file and directory in a particular directory must
have a unique name. You can’t have a file called “DireStraits.mp3”
and another one also called “DireStraits.mp3” sitting there in the
same folder: it’s a name collision. However, it’s perfectly permis-
sible to have two files with the same name in different directories.
This is kind of like how there isn’t more than one “Stephen” in
my immediate family (that would be confusing5), but there are of
course many “Stephens” in the world.

5With apologies to boxing legend George Foreman, who named all four of
his children “George.” That practice is not filesystem-compatible.

6 CHAPTER 1. GETTING OFF THE GROUND

The filesystem tree

The files and directories in a filesystem form a nested, hierarchical
structure called a tree (see Fig. 1.1). I have drawn two kinds of
nodes in this tree: directories (yellow ovals) and files (blue boxes).
As expected, some of the directories have arrows coming out of
them, but none of the files do. The elements that a directory is
pointing to are the contents it contains: e.g., the left-most “america”
directory contains another directory (“nation”) and also the file
A.txt. We use the term parent directory to mean the directory
immediately above an entry in the filesystem; the left-most A.txt
file’s parent directory is the america directory we just spoke of.

Figure 1.1: The Linux filesystem, in pictorial form.

In order to keep you on your toes, I’ve given several entries in this
example filesystem the same name: in addition to a couple different
americas, we’ve got several states, multiple different A.txts, etc.
In no case, however, are the duplicately-named entries in the same
directory. (Convince yourself of that fact.)

Only one surprise

So far this is pretty easy. And it won’t get much harder. But here’s
the one thing you have to get used to: with a CLI, we won’t ever
actually see that filesystem picture visually. It’s there, but we don’t
explicitly view it in graphical form. Instead, there will be a textual
way of referring to every file and directory. It’s straightforward,

1.2. THE FILESYSTEM 7

but can be a bit of a shock to those coming from point-and-click
systems like Windows.

The “current” (or “working”) directory

One vital concept to grasp is that every time we issue a command
or run a program in Linux, we are doing so within the context of a
particular directory. Conceptually, we think of being “in” a certain
directory at any point in time. We call this directory “the current
directory” or “theworking directory”, and we’ll learn commands
to find out what it is and to change it to something else.

Which one we’re “in” has a crucial impact on what happens when
we execute a command. For instance, if our current directory is
the far-left america directory, and we issue a command that does
something to “A.txt”, it would act on the left-most A.txt file, since
it’s the one within the current directory. But if our current directory
were unitedstates, “A.txt” would instead mean the far-right blue
node.

I’ve found that failure to understand the “current directory” con-
cept is one of the most common trouble spots for beginning Linux
programmers.

The root directory

Okay, back to the filesystem as a whole. At the top of the tree is the
root directory, which has no parents. (This is often disorienting
to non-computer-scientists, since in the real world you may have
noticed that trees actually grow up, not down. But in computer
science, we always draw trees growing down from the root.)

The root directory is the anchor point of the entire filesystem: it
ultimately contains everything under it. It also has a very strange
name: “/”, pronounced “slash.” (This is a “forward slash,” by the
way, to the left of your right-most Shift key, not a “backslash.”
Oddly, most Windows systems use a backslash “\” for this instead.)
Stay awake, because this “/” character will shortly mean something
very different as well.

8 CHAPTER 1. GETTING OFF THE GROUND

Paths

It should be apparent to you that as a consequence of this nested
tree structure, you can “reach” every element from the root directory
by traversing from arrow to arrow. Furthermore, you can do so in
only one way. For instance, the B.java file can be reached from
the root by going from “/” to unitedstates to B.java. And that’s
the only way to get there. You can reach loveLetter.txt by going
from “/” through united, states, and america, in that order. This
is true for every file and directory.

What this means is that every entry has a unique path, and we
can express it in text as well as in a diagram. Take the B.java file
for example. Its path is:

/unitedstates/B.java

Look very carefully at that string as we dissect it. The most impor-
tant thing to grasp is that the two slash (“/”) characters each mean
something different. The first one means “the root directory, which
is called slash.” But the second one is merely a separator, delimit-
ing the unitedstates from the B.java. So this path means “start
at the root directory, go down to its unitedstates entry (which
itself is a directory), and there you have the B.java file.”

Similarly, the path to loveLetter.txt is:

/united/states/america/loveLetter.txt

(Note that the slash between united and states makes all the
difference in the world: if it weren’t there, we’d be starting our
descent through the right-most unitedstates directory as before.)

These paths are called absolute paths because they start with a
slash. This means that they give the complete, start-from-the-top
position of a particular file or directory. It’s kind of like referring to
a building by its complete address, including city, state, zip code,
country, and planet. Often we want a short-hand way of referring
to an entry without specifying its entire absolute path. To do so,
we use a relative path.

A relative path is relative to the current directory. And it does not

1.3. LINUX A-B-C’S 9

begin with a slash. Instead, it gives directory names, separated
by slashes, indicating where to start descending from the current
directory.

For example, let’s say the current directory was “/states”. And
suppose I used this relative path:

united/states/mysteryNovel.txt

(Note carefully that it has no initial slash!) This relative path
would start at the current directory (/states) and from there tra-
verse down to united, states, and then finally mysteryNovel.txt.
Obviously, where you end up is critically dependent on where you
start – on what the current directory is.

To test your understanding, realize that in this case where the
current directory is /states, there is no such file called united/
states/america/loveLetter.txt. In fact, even united/states/
america doesn’t exist. However, if we changed the current directory
to be the root (“/”), suddenly the relative path united/states/
america/loveLetter.txt would be legit.

1.3 Linux A-B-C’s

With the filesystem always hovering in the background, let’s in-
troduce the first basic Linux commands to work with the files and
directories. These commands are so basic that they’re like the al-
phabet of speaking any Linux sentence. Using them should even-
tually be as familiar and effortless to you as clicking the mouse.

In all that follows, I will precede anything you are to type on the
Linux command line with a dollar sign prompt:

$

To execute a command, you do not type the prompt itself: it’s just
there to indicate “now is an appropriate time and place to enter a
Linux command.” Just type the stuff after it.

Also, depending on your system and configuration, your prompt
may look different or have other information in it. One common

10 CHAPTER 1. GETTING OFF THE GROUND

setting, for instance, is for the current directory to always appear
as the prompt. (I personally hate that, since it makes different
commands start at different horizontal locations as I work, plus it
consumes a lot of space.) No matter what, though, just mentally
substitute “the dollar sign” for “whatever your Linux prompt is.”

1. pwd

Your first command stands for “print working directory,” and
simply tells you what the current directory is at any point in
time. For example:

$ pwd
/united/states

tells you that you’re currently “in” the states directory, which
is contained within the united directory, which is contained
within the root directory.

Tip: get in the habit of typing pwd a lot, especially at first.
Get ingrained in your brain the question “where am I in the
filesystem right now?” because it matters, yet is not in your
face except when you type this command.

2. cd

cd stands for “change directory” and is how you move to
another place. You give it an argument (kind of like passing
a parameter to a function call in a programming language,
although we don’t use parentheses or commas here) which is
where you want to go:

$ cd /america/nation

Here, I’ve specified an absolute path. If I now execute pwd, I
see that it worked:

$ pwd
/america/nation

1.3. LINUX A-B-C’S 11

More common is to specify a relative path. If we first go back
to our original location:

$ cd /united/states
$ pwd
/united/states

we can then say “go from here into the america directory”:

$ cd america
$ pwd
/united/states/america

I can’t overestimate how important it is to notice that in
the previous cd command, I did not include a slash before
america. If I had, it would have been an absolute path, and I
would have gone to a completely different part of the filesys-
tem:

$ cd /america
$ pwd
/america

“Special” directory shortcuts

This is a good time to mention that when you are specifying
paths, there are three very common shortcuts that you’ll want
to know about.

• The current directory: .
A plain-ol’ dot (period) is used to mean “the current
directory.” There’s no obvious uses for this yet, but be-
lieve me, it comes up all the time, so just memorize it.
A useless example for now:

$ pwd
/united/states
$ cd ./america
$ pwd
/united/states/america

12 CHAPTER 1. GETTING OFF THE GROUND

So “./america” is another way of saying “america”. (Told
you this example was useless.)

• The parent directory: ..
More immediately useful is the double-dot, which means
“the parent of the current directory.” If we’re currently
in /united/states and want to go to /united, one way
to do it is:

$ cd ..
$ pwd
/united

We can also join this with additional relative path stuff
to move around the hierarchy in various ways:

$ pwd
/states/united
$ cd ../usa
$ pwd
/states/usa

Here we went to a “sibling” directory by “going up one,
and then down to a different child.”

• The home directory: ~

A shortcut for “the home directory” (which means “the
current directory when you first log in”) is a tilde. It’s
commonly used in conjunction with other relative path
stuff, like the last double-dot example, above.
Your home directory will probably be something like
/home/joeschmo (which you can verify by just typing
pwd when you first log in). Suppose it is. Then, you can
use the tilde:

$ pwd
/somewhere/else/in/the/filesystem
$ cd ~/shortStories/scifi
$ pwd
/home/joeschmo/shortStories/scifi

to go to any of your subdirectories.

1.3. LINUX A-B-C’S 13

3. ls

While pwd tells you what the current directory is, the ls com-
mand (which sort of stands for “list”) gives you its contents.
If I type it while in the /america directory, for instance, it
tells me:

$ ls
nation A.txt

These are the two entries from Figure 1.1.

A few gotchas to be aware of. First, there’s no way from that
listing to tell that nation is a directory whereas A.txt is a
file. If you want to see that, you need to add the “-l” option
(a minus sign followed by the lower-case letter “ell”):

$ ls -l
-rw-r--r-- 1 kyloren sithlords 17 Sep 5 16:21 A.txt
drwxr-xr-x 2 kyloren sithlords 4096 Sep 5 16:21 nation

Lots of clutter here. The key points:

- The far-left character on each line is either a “-” or a “d”,
indicating file or directory.

- Files in Linux have “owners,” meaning specific users who
created them and have permissions to manage them. Both
of these entries are evidently owned by user kyloren.

- The 17 and 4096 are file sizes (in bytes).
- You can see the date and time each entry was last modified.

The “-l” stands for “long file listing.” Most Linux commands
have a bevy of different options you can specify when you
execute them, most often beginning with a minus sign.

Another important one for the ls command is “-a” which
stands for “all files, please.” If that sounds like a strange
option, that’s because it is. It turns out that ls by default
doesn’t show you all the files; in particular, it omits those

14 CHAPTER 1. GETTING OFF THE GROUND

whose names start with a dot (.). Why? There are reasons.
The only time this will be relevant to you soon is if you want
to work with your .bashrc file.6 You’d have to type “ls -a”
in your home directory to actually see it in the listing.

U
The above three commands – pwd, cd, and ls
– go together like Luke, Han, and Leia. Get in
the habit of using them literally every minute
you’re working on the Linux command line.

4. mkdir

To create a directory in the first place, use the mkdir com-
mand and give it the name:

$ mkdir evilplans

This new evilplans directory will be created inside the cur-
rent directory.

Note carefully that making a directory does not automatically
put you in it! Lots of beginners mistakenly think this will
happen, but you can see that it does not:

$ pwd
/home/kyloren
$ mkdir evilplans
$ pwd
/home/kyloren

You have to cd as a separate step if you want to now be in
evilplans:

6If, in your home directory, you create a file with vim called literally .bashrc
(pronounced “dot-bash-arr-see”) then whatever Linux commands it contains will
be executed automatically every time you log in. Once you get proficient with
Linux, it’s very handy to put shortcuts, aliases, and various preferences in it.

1.3. LINUX A-B-C’S 15

$ cd evilplans
$ pwd
/home/kyloren/evilplans

A useful option to mkdir is the “-p” option which means
“make all parent directories as necessary.” This lets us create
a deeply-nested structure all in one fell swoop:

$ mkdir -p find/luke/skywalker/now
$ cd find/luke/skywalker/now
$ pwd
/home/kyloren/find/luke/skywalker/now

5. cp

To make a copy of a file, use cp and give it two arguments, a
source and a destination. If I type:

$ cp A.txt Q.txt

I will now have two exact copies of the file which can be
independently modified:

$ ls
nation A.txt Q.txt

I can also use this to make a (same-named) copy of a file to
a different location, by providing a directory as the second
argument:

$ cp A.txt /states/usa
$ cd /states/usa
$ ls
A.txt

16 CHAPTER 1. GETTING OFF THE GROUND

6. mv

mv has pretty much the same effect as cp, except that it does
not retain the original copy. This command can be used to
rename a file (“$ mv oldfilename newfilename”) as well as
to change a file’s location.

7. vim (and vimtutor)

It’s really ludicrous to include this command in amongst all
the others, when its ins-and-outs could (and do) occupy entire
textbooks in their own right. vim is a text editor program with
a zillion amazing features which you will use this semester to
write your programs. The normal way of creating a file, in
fact, will be this:

$ vim notesOnTheResistance.txt

or this:

$ vim DestroyGalacticRepublic.java

after which you will do loooooooooooots of other stuff way
beyond the scope of this book. That stuff will be cryptic and
agonizing at first, but will eventually become second-nature
and give you the tremendous text editing power you need
to be a truly efficient software developer. It’s kind of like
learning to use the Force for the first time.

For now, I’ll make this (strong) suggestion: to learn vim for
the first time, type this command (all one word) at the com-
mand line:

$ vimtutor

Grab a Coke, and spend 30-40 minutes patiently reading and
following the instructions. This tutorial is quite good, and
will teach you the very basics of getting a file created and
edited with this incredible tool.

1.3. LINUX A-B-C’S 17

8. git

git is another one that doesn’t really fit in this list, since it’s
much more than just “a command.” For now, though, all you
need to understand is that it’s a version control system
that allows you to track and manage the changes you make
to your software over time.

Up until now, you’ve been dealing with a paradigm like “the
IDE always has the most recent copy of my code, and that’s
the only version of it that exists.” You’ll need much more
flexibility than that when you work on large systems.

Here’s all you need to know at present, though:

• The command “git init .” (don’t forget the dot at the
end, after a space) creates a git repository (or “repo”)
in the current directory. That just means that your cur-
rent directory, and everything under it, are now “under
git’s management.”

• You use “git add” to make git aware of one or more files
that you want it to track from that point forward. You’ll
type “git add file1 file2 file3” or however many files you
want to add at that point. Ordinarily you’ll want to git
add all of your .java files.

• When you’ve made a significant change to one or more
of your files that you want git to be aware of, you’ll enter
this command:
$ git commit -a -m "A message describing the change."

Each such change is called a commit. Think of it as
taking a snapshot of your code that you can return to
later.

• “git status” and “git log” are two useful commands
that show the current state of your files as git sees them,
and a history of all the different commits you’ve made.
Type them occasionally just to get a feel for what kind
of information they show.

We’ll talk much more about git later. For now, just know
that it exists, and type the above commands verbatim when
prompted.

18 CHAPTER 1. GETTING OFF THE GROUND

9. javac and java

Now, finally to some programming stuff. On your Linux sys-
tem, the Java compiler (i.e., the program that converts your
source code into the form the computer needs to run it) is
called javac, and the virtual machine (the interpreter that
runs your compiled code) is called java. Both of these are
part of the JDK, or “Java Development Kit,” that you install
in order to program in Java.7

To compile, you give javac all the Java files that are part of
your program:

$ javac DestroyGalacticRepublic.java Bombs.java SinisterPlans.java

which will either produce a .class file for each .java file, or
compiler errors for you to read. Finally, to run it, you give
java the name of the class that contains your main() method :

$ java DestroyGalacticRepublic

(Notice we don’t include “.java” or “.class” here, and notice
we don’t mention every Java class, only the one that has the
main().)

7Just to confuse you, the JDK has sometimes been called the “Java SDK”
(“Java Software Development Kit”) and the “J2SE” (“Java 2 Standard Edition”)
in the past, and you’ll likely run across those acronyms as well. To confuse you
even more, the software you need to simply run a Java program (as opposed to
writing your own) is called the “JRE” – Java Runtime Environment. Finally,
to confuse you yet further, Java version numbers were originally all “one-dot-
something” (like “Java 1.3”) but in 2004 they ditched the “one-dot” and started
naming the versions after the second number alone. (So, the successor to “Java
1.4” was “Java 5.”) This book assumes you’re on Java 8, by the way.

1.4. THE QUICKEST PATH THROUGH THE WOODS 19

1.4 The quickest path through the woods

Whew. That was a lot. It’s kind of like moving to another country:
every little thing, all at once, seems different.

All I can do is promise you it will get easier as you get used to that
new country. And there will be parts of it you will like – maybe
you’ll even like it better than the point-and-click country you grew
up in.

In the meantime, let’s pull together all the steps to get a “Hello
World” Java program running on the Linux command line.

1. Log on to your Linux system (for instance, your Google Cloud
instance), however you do that.

2. Create a directory to hold your project:

$ mkdir myFirstProgram

3. And make sure to actually go there:

$ cd myFirstProgram

4. Create a git repo to manage this project:

$ git init .

(and of course don’t forget that pesky dot at the end.)

5. Now create a Java file:

$ vim HelloWorld.java

(You are now in vim. Everything you learned dur-
ing your vimtutor session, and everything you can get
from a zillion different “vim cheat sheets” on the In-
ternet, is relevant now. Good luck.)

6. Give it these contents:

class HelloWorld {
public static void main(String args[]) {

System.out.println("yo sup dawg");
}

}

20 CHAPTER 1. GETTING OFF THE GROUND

7. Save your file and exit vim.

8. Now compile it:

$ javac HelloWorld.java

9. And, since it gave you no errors, run it:

$ java HelloWorld

10. Finally, add the file to your repo:

$ git add HelloWorld.java

11. and commit it:

$ git commit -a -m "Finished chapter 1!"

It’s a big bright world ahead of us. Go take a break and I’ll see you
next chapter.

Chapter 2

The “software crisis” and
encapsulation

This book is going to dive deeply into a huge pile of nuts and bolts.
But before we take the leap into particulars, it’s important to stand
briefly at the precipice and understand why we’re jumping.

Our subject goes by the names Object-Oriented Analysis & Design
(OOA&D) and Object-Oriented Programming (OOP).1 But what
does “object-oriented” even mean? What problem was it intended
to solve? When was it invented and why?

2.1 Ancient history

A long time ago, in our own galaxy, a situation emerged which
has been labeled the software crisis. This crisis didn’t happen
at an instant in time; it was a set of disagreeable circumstances
which gradually evolved until it became unbearable. The crisis is
usually dated somewhere in the 1970’s. This was just as the high-
tech computing industry was really starting to heat up, on its way
to permanently changing the lives of almost every person on the
planet.

Now “crisis” is an alarming word, designed to get your attention.

1I’ll use these two terms (and acronyms) pretty much interchangeably.

21

22 CHAPTER 2. THE “SOFTWARE CRISIS”

It’s worth asking what all the hubbub was about. The immediate
symptom may not strike you as a three-alarm fire: it was simply
that software projects were tending to overrun their schedules.

The ’70’s were not a very plug-and-play era, since standards had
not yet evolved to facilitate intercompatibilities between devices or
programs. So the focus was often on building complete systems
from the ground up. Engineering teams would plan releases of key
product lines that involved numerous components, such as system
architecture, hardware design and integration, data collection and
organization, system and network configuration, and software de-
velopment at both the operating system and the end user levels.

What managers discovered was that the software components of
projects were consistently coming in late and over-budget. Some-
times, they didn’t get finished at all. When they did, they were
buggy and brittle. And they were especially vulnerable to require-
ments changes: if circumstances were discovered during the project
that required a change in the way the software needed to work, the
software team was often strikingly unable to adapt to this. They
could be set back weeks or months to implement even a modest
change.

This astonished everyone at the time. After all, “software” – a
pun on “hardware” – was a term intended to convey the flexible,
malleable nature of computer programs as contrasted with physical
devices. Software was supposed to be easy to write and easy to
change. That was the point. You didn’t need complex manufac-
turing processes: you needed a computer and a text editor. And
you (seemingly) didn’t face challenges of scale the way you did with
hardware: you might run out of room to put logic circuits on a chip
or a motherboard, but there was no limit to the size of a text file.

So building complex stuff quickly, and turning on a dime when
necessary, ought to be easy to do in software. Right?

Quantifying the crisis

I’ve never seen any hard data quantifying the budget overruns and
delays that software projects faced in the 1970’s, but it’s possible

2.1. ANCIENT HISTORY 23

to sketch it conceptually. Take a look at Figure 2.1. This is my
attempt to show the main dynamic at work.

Figure 2.1: The software crisis quantified: how long it took to complete a
program of various sizes. (Conceptual.)

On the x-axis is some measure of the complexity of a proposed com-
puter program. Now complexity is devilishly difficult to quantify –
League of Legends is more complex than Angry Birds, but by how
much? Twice as complex? Ten times? A hundred times? I’ll have a
better answer to that in a few paragraphs, but for now, as a proxy
we’ll just use the size of the program, measured in lines of code2

(“LOC” or “KLOC.”3)

On the y-axis is the corresponding amount of time it would take a
programming team of a certain size to design, build (code), debug,

2I know what you’re thinking, and you’re right. Not all lines of code are
equally complex. Some of them are just variable assignments, whereas others
are parts of complicated loops or function calls. Heck, some are just comments.
Heck, some are actually blank. While all true, this analysis is conceptual any-
way, and we can surely say that raw program length is at least somewhat related
to complexity. Show me a real-life ten-line program that’s actually more com-
plex than a real-life ten-thousand-line program and I’ll change my mind.

3“Lines of code” is sometimes abbreviated “LOC.” Even more common is
the abbreviation “KLOC” for “thousands of lines of code.”

24 CHAPTER 2. THE “SOFTWARE CRISIS”

and test the program.4 As with the x-axis, we’re making all kinds
of simplifying assumptions here: we’re not worrying about exactly
how many developers there are, how much experience they each
have, what language they’re writing in, etc. That’s okay. The
point of this exercise is simply to recognize the nature of the curve,
showing how these two fuzzy variables were related in the ’70’s.

And a daunting curve it is, too. And very counterintuitive to project
managers. One would assume that if a 4,000-line program took
the development team a couple of months to release, an 8,000-line
program would take about twice that long. After all, it’s twice as
many lines, right?

The reality was not even close. A program with twice as many
lines could easily take four times as long to build...or six, or ten,
or twenty times. Worse, the programs that were built were also
very hard to change. Take a large enough program and try to
add a feature, fix a bug, or support a new data format, and you
inevitably broke something else while making the change. Then you
fixed what you broke, but d’oh!! broke something else by doing so,
etc.

It was miserable, especially because advances in other areas (like
hardware) were making exciting technologies possible for the first
time. Everyone was rarin’ to go, yet unexpectedly the software
(supposedly the easy part) was gumming up the works.

For a time, it almost seemed as if the human race had uncovered
some built-in limitation of the universe, like the speed of light. This
hypothetical constant might have been called “maximum complex-
ity,” meaning the greatest amount of sophistication one could build
in to a single logical creation. That curve in Figure 2.1 starts to go
up fast. Maybe, people depressingly thought, a functioning 200,000-
line program isn’t even possible to create? That threatened to put
a damper on a lot of expectations.

4Note carefully that this has nothing to do with how long the code takes to
run. We’re talking about programmer-time here, not CPU-time.

2.2. SOFTWARE AND COMPLEXITY 25

2.2 Software and complexity

Let’s consider a different way to measure a program’s complexity
than simply counting the lines of code. Instead, let’s quantify its
number of dependencies.

A dependency between two chunks of software (be they individual
lines of code, constructs like loops or if/else chains, functions, or
something even bigger) means that if one of them changes, the
other may possibly be affected.

For instance, suppose that in “code chunk A,” I define a function
compute_sales_tax() to take one argument: the price of an item.
It will return the sales tax on that item as a simple percentage.
Now, suppose that in “code chunk B,” I call the method as follows:

// In code chunk B...
double item_price = 24.99;
double total_price = item_price + compute_sales_tax(item_price);

We say that code chunk B has a dependency on A. If we were
to change A to require a second parameter (perhaps the state the
customer lives in, since different states have different laws about
whether and how to collect sales tax), that’s great and all, but B
immediately breaks unless we change it as well.

This example is a syntactic dependency: the compiler will fail when
trying to compile code chunk B because its parameter list is wrong
(i.e., doesn’t match A’s). In general, though, not all dependencies
are merely syntactic. There are also logical dependencies, in which
one chunk of code depends on another’s functionality working a
certain way.

For example, suppose that we change compute_sales_tax() in a
different way: instead of returning the sales tax, we make it return
the cost of the item plus the sales tax. If our tax rate is 5%, then
the original version of compute_sales_tax(24.99) would return
1.25 (the sales tax on the item), but our new version would return
26.24 (the item’s price with its sales tax added in).

26 CHAPTER 2. THE “SOFTWARE CRISIS”

This may seem like a good change, since it prevents code like that
in chunk B from having to add the item’s price back in. However,
if we don’t change B in tandem with A, B breaks again. It’s not
a compilation error this time, but a logic error: B’s total_price
variable is now going to contain 51.23 because we didn’t keep the
two chunks of code in sync.

Dependencies == complexity

Now why do I bring all this up? Because it turns out that the length
of a program was not the cause of the software crisis. Instead, it
was the number of dependencies programs had. That turns out to
be a different, and more salient, measure of a program’s complexity.

Figure 2.2: Two programs, each with 35 code chunks. On the left, there
are 230 dependencies. On the right, there are only 83. The right program is
properly encapsulated and modular, whereas the left one is neither.

Consider the two graphs5 in Figure 2.2. Imagine that each green
circle represents one chunk of code. Each line between circles rep-
resents a dependency: the two chunks of code it connects rely on
each other not to change, because if one of them changes, the other
one might break.

The kind of program illustrated by the left-hand graph sometimes
goes by the name spaghetti code. You can see why just by look-

5A graph in computer science terms is a data structure that consists of
vertices (or nodes) and edges (or links) connecting them. They’re often
drawn with circles and lines, as Figure 2.2 does.

2.2. SOFTWARE AND COMPLEXITY 27

ing at it. Essentially, every line of code potentially depends on
everything else.

By contrast, the right-hand graph depicts a modular program. It
has the same amount of functionality – 35 green circles in each case
– but far fewer dependencies between them (only about a third as
many). Looking further, you can see how most of the circles are
“hiding” behind a gatekeeper circle that connects to the main group.
The majority of circles are shielded from the morass of dependencies
by living in an isolated world, and only communicating with the rest
of the program through their gatekeeper.

Now look back at the left-hand graph. Choose one of the circles at
random, and imagine that it represents a chunk of code you need
to change (maybe there’s a bug in it you have to fix, or you need
to extend it in some way). Think about the repercussions of that
task. Fixing the green circle is a job in itself, but once you’ve done
so, how can you be sure you didn’t break something else? There
might be twenty other chunks of code that depend on the first one
staying the way it was in order to work correctly. Just identifying
all of them is an enormous task, to say nothing of verifying that
they all still work, and fixing the ones that don’t. And oh, by the
way: if you do end up having to fix another green circle because
your first change caused a ripple effect...that second change is going
to cause the exact same problem.

The situation is obviously much easier with the right-hand program.
Again, choose a circle at random, and then ask yourself how onerous
it is to change it. If you choose one of the many circles that are
“hiding” behind their gatekeeper, the possible damage is minuscule:
only three or four other circles might be affected. If you have to
change a gatekeeper, the news is worse, but still far better than it
was with the left-hand program. Just count how many dependencies
there are for even the most densely connected circle of the modular
program – there ain’t many.

Figure 2.3 quantifies this further, and in fact finally gives us the
insight we need to understand the cause of the curve in Figure 2.1
(on p. 23). If you’ve taken a Discrete Math class, you may remember
that the number of possible edges in a graph goes up as the square

28 CHAPTER 2. THE “SOFTWARE CRISIS”

Figure 2.3: The maximum possible number of dependencies for programs
of different sizes.

of the number of vertices. (Specifically, a graph with n vertices can
have up to n(n−1)

2 , or about n2

2 , edges.) So doubling the number
of code chunks approximately quadruples the number of possible
dependencies in the program. That explains why Figure 2.1 was
superlinear (i.e., increased faster than a straight line would have),
and why everyone in the ’70’s was underestimating how much time
it would take to write and maintain large programs.

2.3 Encapsulation

This, then, was the root cause of the software crisis. Larger pro-
grams, which had more parts, inevitably produced too many in-
terlocking dependencies between their parts. Those dependencies
were a killer: changing or adding any one part threatened to break
a dozen other parts. So a program with twice as many features
didn’t take twice as long to construct; it took way more than twice
as long. And a program with ten times as many features looked
plumb out of reach.

2.3. ENCAPSULATION 29

And now finally, the punchline. The way the human race conquered
the dependency problem, and overcame the software crisis for good,
was by means of the single most important aspect of object-oriented
programming: encapsulation. This feature gets far, far less press
than it should. It made possible all the complex software applica-
tions that the world now relies on every day. It’s one of the most
important principles – perhaps the most important – in all of com-
puter science.

So what is encapsulation? In a word, it’s an organizational principle
that permits many more green circles to be added to a program
without also having to add a zillion more pesky lines. It’s a way to
keep a program’s dependencies under control, so that as it grows
larger, it doesn’t also grow more brittle and bug-prone.

Glance back at Figure 2.2 on p. 26. Simply put, the right-hand
program is employing encapsulation, and the left-hand program is
not. On the right, each of the little clusters of tightly-knit green
circles is “encapsulated” from the other clusters. That isolates them
safely behind a gatekeeper such that changing them will not trigger
a chain reaction and require other changes.

In all the code we write, we want to strive for this. We want to
make our units of code highly cohesive yet loosely coupled. We
want a lot of small components (not a few large ones), and we want
each component’s internal workings to be invisible to the outside
world. It’s the only way to avoid the hell of spaghetti code.

OOP’s encapsulation solution: the class

I’ve been using vague terms like “chunks” and “units” and “com-
ponents” to refer to these bits of interacting software. The key
innovation of OOA&D was a particular kind of “unit,” structured
in a particular way: the class. It changed the world.

We’ll be talking lots and lots about classes throughout this book.
Every single line of code we write, in fact, will be part of a class. For
now, I want you to imagine a class as being comprised of two parts:
a public interface and a private implementation. In terms of
Figure 2.2, the public interface is the gatekeeper node that connects

30 CHAPTER 2. THE “SOFTWARE CRISIS”

each cluster to the whole, whereas the private implementation is the
other nodes in the cluster that hide behind the gatekeeper.

Another way of viewing this is Figure 2.4. The concentric yellow cir-
cles represent a class, with its two components. To evoke a biology
metaphor, you can think of the public interface as the membrane
of a cell: nothing goes in or out of the cell body except through the
membrane.

Figure 2.4: Encapsulation, visualized abstractly.

Almost all the code for the class, including the variables it uses and
the bodies of its functions, are in the inner circle, safely sequestered
away from the membrane. This means they are free to change
without impacting any other part of the code that’s using the class.
The only things in the outer circle are the function signatures
(i.e., the names, return types, and argument lists of the functions).
This is the information other parts of the code must know in order
to make use of the class.

The right-side of the diagram is my way of drawing a connection
between Figures 2.2 and 2.4. Each cluster of green code chunks
on that earlier diagram will form a class. The “gatekeeper” node
through which all of the other code chunks must communicate gets
mapped to the public interface of the class, while all of the other
chunks are put in the private implementation.

2.4. FEATURES OF OOP 31

2.4 Features of OOP

The object-oriented revolution came about simply by taking what
was formerly spaghetti code, and learning how to organize it into
encapsulated classes. It’ll take the whole book to completely unpack
that, but for now let me give you a glimpse of some of the features
of this paradigm shift:

1. A higher level of abstraction. Before OOA&D, encapsu-
lation was already sort of a thing, since ordinary functions
gave programmers a way to group code chunks together into
cohesive bits. In this older style of procedural program-
ming, developers wrote code to compose and combine these
functions to achieve a larger purpose. The difference with
OOA&D is that the fundamental building block is no longer
the function, but the class, which is a bigger, richer, more
sophisticated entity. It encompasses functions, variables, and
more besides. Being able to program “at a higher level of
abstraction” means you have larger, coarser-grained, more
powerful pieces with which to assemble your whole. It’s like
building a story out of whole paragraphs instead of out of
individual words or letters.

2. Nouns, not verbs. An old-school function is conceptually
a verb: it represents a command to do something. As we’ll
see, a class is conceptually a noun: it has the ability to be
something. Thus, with OOA&D you don’t think so much
about what you want to execute – first do this, then that,
then print the output – as about what you want to model
– how can you best represent the important entities in your
system? OOP is about building a representation of a world,
rather than giving instructions.

3. Data and behavior together. Before the object-oriented
paradigm shift, programmers specified their data separately
from the code that operated on that data. They did this de-
liberately. In a C++ header file, they’d write a number of
struct definitions, each specifying an assortment of related
variable names and types. Then, in many separate source

32 CHAPTER 2. THE “SOFTWARE CRISIS”

files, they’d have lots of functions that used various of these
structures. The “openness” of all this – any function, any-
where, could see and refer to any field of any data structure
– was thought to be an advantage.

After many years of painful discovery, it turned out this isn’t
the right way to do it at all. Instead, you want the oppo-
site. The data associated with a particular type of entity (be
it a friend request, a sweater, or a magic sword) ought to
be closely bound to the operations (accept(), purchase(),
wield()) that make use of that data. This new way of do-
ing things is built in to the object-oriented class construct: a
class represents some type of entity, and it specifies both the
data needed to characterize instances of that entity and the
operations that can be performed on those instances. The
two are defined right next to each other and maintained in
lock-step.

4. Code reuse. I’m old enough that I remember when “code
reuse” was a pipe dream. People would think, “okay, I need a
linked list (or a heapsort algorithm, or a binary search tree,
or...), and surely zillions of people have written this sort of
thing before. However, it’s just too hard to find someone else’s
code, figure out how to use it, trust that it works, and assim-
ilate it into my program. So I’ll just write it from scratch.”
Seriously. That’s how the world worked. I wrote many pro-
grams in my early days without using a single line of code
from anyone else.

There were several reasons code reuse was hard, including
poor documentation, primitive search engines, and an overall
lack of awareness in the software community. But the #1
reason was assuredly the absence of encapsulation. In order
to incorporate someone else’s linked list (or whatever), you
had to locate portions of several different files, all of which
were intertwined with other stuff irrelevant to your purpose.
You had to understand it enough to gingerly insert it into
multiple places in your own files, hoping it could peacefully
co-exist alongside your own code. The chances of this were
low.

2.4. FEATURES OF OOP 33

Nowadays, code reuse is absolutely the standard. If you’re
writing a program these days, you should only write about
20% of the code yourself; the rest should come from standard
libraries or other public sources. You can just grab stuff and
use it and be confident it’ll work. Why is this easy? Because
that “stuff” is encapsulated. It’s modular, with no external
dependencies. It’s all assembled coherently together in nice
& neat packages (called classes) that are plug-and-playable.
Writing a program is more like building with Legos® than it
ever has been.

Postlude

This chapter was very abstract and qualitative. The rest of the
book won’t be that way. But I felt it was important to lay some
groundwork so that you would appreciate what problem object-
oriented programming was intended to solve, and how through the
miracle of encapsulation it did so. Thanks for making it through.

Chapter 3

Classes and objects

Java is called an “object-oriented” programming language. Now if
I were King of the World, I would have called it a “class-oriented”
language instead. That’s because in Java, you don’t write code for
objects, but for classes, and the code then defines the behavior of
the objects that are based on them.1 You’ll sometimes hear people
mistakenly say stuff like, “I wrote some code for the DatabaseCon-
nection object today.” It makes me wince. They weren’t writing
“code for the object,” but the code for a class.

3.1 Terms

So here’s a crucial pair of definitions. A class is a category of
things. An object is a concrete example of a class. If “University”
is a class, then “UMW” is an object; if “Course” is a class, then
“CPSC 240” is an object. The difference is real, and it is vitally
important to keep at the forefront of your mind as you begin your
OO quest. Getting them mixed up is like Peter Venkman crossing
the streams.

You’ll sometimes hear alternate definitions of these terms, like “a

1There are other languages, for instance JavaScript (no relation to Java),
which do IMO deserve the term “object-oriented,” since you can create code for
individual objects rather than classes, and not every object has to have a class
at all.

35

36 CHAPTER 3. CLASSES AND OBJECTS

class is a template, and objects are copies of that template.” This
is better than out-and-out confusion, but it still misses something
important. It’s an operational definition, instead of a conceptual
definition. It describes “class” and “object” in terms of the mechan-
ical way the virtual machine carries out its duties, rather than in
terms of their role in modeling, which is what OOA&D is all about.

In our world, every single software object will be a member of a
category, and that category will define everything about its inner
structure and rules of behavior.

By the way, an important near-synonym for class is type. (It’s
only a near -synonym because primitive, non-classes like ints and
booleans are also types.) An important exact synonym for object
is instance.

In addition to those nouns, an important verb in our vocabulary will
be the term instantiate. It means “to actually create an object of a
particular class.” Some people use words like construct or create
for this, or even “new” (or “new up”) as a verb, but for the most
part we’ll stick with instantiate.

3.2 A different kind of language

Classes and objects are among the basic building blocks of any OO
program, and they will play a prominent role on variousUML dia-
grams. UML (“Unified Modeling Language”) is a design language,
not a programming language. It is expressed in visual diagrams,
not streams of text. Even though it’s not text-based, though, and
even though there’s no “compiler” forcing us to adhere to the syn-
tax, it still has rules that must be followed, and precise meanings
that can be inferred.

Figure 3.1 shows what a class, and an object, look like in UML.
(I’m putting classes in yellow and objects in blue, but those colors
aren’t part of UML itself, just the black-and-white stuff.) Both are
boxes, but notice the class box has three compartments in it while
the object box has two.

3.2. A DIFFERENT KIND OF LANGUAGE 37

Figure 3.1: A class (left) and an object in UML.

Classes in UML: the first two compartments

Let’s look at the class in detail. In the top box is its name; so
far so good. One thing to point out, though, is that in Java, the
names of all classes are Capitalized. Don’t ever violate this rule,
for convention’s and confusion’s sake!

The second compartment has the class’s instance variables. You’ll
hear people use other terms for these like like “member variables”
and even “class variables,” but I strongly prefer instance variables
(or “inst vars” for short) and here’s why: every instance of a class
has its own copy of its instance variables. This truth is absolutely
fundamental to OOP, and it’s worth re-reading that sentence again
and again until it’s part of your core being. As you know, declaring
a plain-ol’ variable like “int x;” creates a single storage location
in which a value can be stored. But declaring an instance variable
is a far-reaching choice that destines every Car (or whatever) that
will come about in the future to have its own copy of that variable.
It’s our way of defining the very structure of Cars in perpetuity.

One slight headache is that the UML syntax differs from Java’s a
bit: instead of listing the variable’s type and then its name, we
reverse them, we use a colon instead of a space, and we omit the
semicolon. Otherwise, it’s pretty straightforward to interpret that

38 CHAPTER 3. CLASSES AND OBJECTS

second compartment.

By the way, one important piece of syntax in that second compart-
ment is an underline. If an inst var is underlined, then it actually
isn’t an “instance variable” after all: it’s a class variable. This
means that there’s only one shared variable for the entire class,
rather than a different variable for each object. In Figure 3.1, the
integer num variable is the only underlined one. So even though
every Car has its own make, model, odometer reading, etc., they
all share one num (which presumably represents the total number
of Car objects instantiated so far). This makes sense, since after
all such a variable is not specific to a certain Car. We’ll see that
in Java, class variables are created by using the “static” keyword
where the variable is declared.

Classes in UML: the third compartment

The third compartment isn’t much harder: it contains themethods
for the class. Like everything it seems, programmers have multiple
terms for this too: they’re called member functions or class
functions on occasion. We’ll stick with method.

Functions vs. methods

Many programming languages (including Python and C++) allow
the programmer to create functions, which are coherent chunks
of code that can be called, passed arguments, and return a
value. You’ve undoubtedly seen, and written, many such functions
in your previous programming courses. They’re also sometimes
called “subroutines.”

Java is somewhat strange in this regard in that you normally don’t
write ordinary functions, but rather methods.2

The crucial distinction between a method and a regular ol’ Joe
function is this: while you can simply call a function to trigger it,
you must call a method on an object . In the example, we have
a fillUp() method defined on the Car class. Since it’s not an

2As we’ll see, adding the word “static” before a method declaration makes
it a so-called “static method,” which is essentially a function.

3.2. A DIFFERENT KIND OF LANGUAGE 39

ordinary function, but rather an OO method, we must call it on a
particular instance of a Car. In Java code, this does not work:

fillUp(); // NOPE

nor does this:

Car.fillUp(); // NOPE

Instead, one must call fillUp() like this:

johnsMercedes.fillUp(); // Correct!

where johnsMercedes is the name of a valid Car object, previously
instantiated. This is what we mean by “calling .fillUp() on the
johnsMercedes Car object.”

Beginners sometimes view this as a syntactic nuisance. It is not. It
is fundamental to what your code means. Conceptually, it makes
sense to have a particular car, and to fill it up. It does not make
sense to say “hey universe, fill up cars” (which is what “fillUp()”
seems to say) nor to say “hey Cars-in-general, fill yourself up” (which
is what “Car.fillUp()” seems to say).

By the way, notice in the example I just gave, johnsMercedes is
not capitalized. (The capital “M” in the middle doesn’t count; that’s
just an artifact of camelCase, which is a way of making multiple
words easier to read.) This is always true: in Java, object names
should always begin with a lower-case letter.

Back to the third compartment. You can probably tell that the
things inside the parentheses are arguments to the respective meth-
ods, with the same name-first-then-type colon-syntax, and you can
probably tell that after the closing parenthesis, you have the return
type of the function. All of this looks vaguely Java-like, and that’s
because even though a UML diagram is technically programming-
language-independent, language-specific things like int and String
can’t help but creep in in practice. Our thoughts betray us.

40 CHAPTER 3. CLASSES AND OBJECTS

Various “special” methods

A few of those methods are worthy of special note. The first one
listed, called simply “Car”, is a very special kind of method called
a constructor which we’ll be talking about a lot. Here’s an iron-
clad rule which is fundamental to much that follows: whenever an
object is instantiated, one of its class’s constructors is called. This
happens automatically; it’s not something we have to do ourselves.
(Java’s syntax for this, as we’ll see, makes it kind of look like we’re
calling the constructor ourselves. This is a mixed blessing.) In
Java, there are two things that “make” a method a constructor: (1)
it must have exactly the same name as the class, and (2) it must
have no return type. (Note that “no” return type is not the same
as a void return type! I mean no return type at all.3)

By the way, just as a class can have multiple methods with the
same name as long as those methods have different argument lists,
so it can have multiple constructors subject to the same conditions.
This is a very common practice, although in this first example we
have only one Car constructor.

Also, just as in the second compartment, an underline indicates
that the method “goes with the whole class, not with each object.”
And just as before, this implies the use of the static keyword. A
static method is essentially a function: i.e., you don’t call it on an
object. Instead, you just call it on the class itself. In the example
above, numCars() method is static, which means that you could
write “Cars.numCars()” to retrieve the number of Car objects that
have been instantiated to that point. Static methods are quite
rare, but they do arise occasionally, and are always indicated with
an underline in UML.

The other methods I’ll draw your attention to are the ones that be-
gin with “get”. People call these methods “getters,” and normally

3If you mistakenly include the word void before your constructor when you
write the code, it is officially no longer a constructor! It’s now just an ordinary
method – weirdly named the same as the name of the class it’s in – which will
not be automatically invoked at instantiation time as a constructor should. I
once had a nasty bug at the eleventh hour of a software release because of this
exact issue.

3.2. A DIFFERENT KIND OF LANGUAGE 41

they simply return the value of the instance variable in question.
Often one also has “set” methods to set the values of inst vars,
although our example doesn’t have any of those. Btw, some people
also call getters and setters accessors, and sometimes specifically
call setters “mutators,” a term which always made me chuckle.

Objects in UML

Now let’s examine the blue box in Figure 3.1, which represents an
object rather than a class. It has only two compartments, not
three. That’s because there’s no need (in most OO languages)
to say anything about an object’s methods when focusing on the
object: after all, the methods are simply defined by the class, and
are common to all instances of that class. It is important, however,
to specify the current state of the object, which means the values,
as of now, of all its instance variables. In the picture, you can see
that there is a Car object in memory representing an old Chevy
Malibu with a zillion miles on it and other suboptimal features.

Perhaps the strangest thing about a UML object is the top com-
partment. Notice that it says “: Car” (“colon-Car”), which is not
a typo. Here’s the sitch. The top compartment of a class has the
class’s name, since that’s all there is to say about it. The top com-
partment of an object, meanwhile, has the object’s name, followed
by a colon and then its class. Just like we said “make : String”
earlier, so here we can say “johnsMercedes : Car”.

Okay...but why, then, is Figure 3.1 missing the name before the
colon entirely? Because we’ve chosen not to name this object in
the diagram. It’s just “a Car” with certain properties, not a named
Car. This may seem odd, but in fact 99% of the time we will do
exactly this. And that’s because bizarrely, objects don’t have names
in Java, even though it may seem at first that they do.

More on that later. For now, just accept the fact that UML dia-
grams can depict objects, and normally we don’t choose to specify
the object’s name – only its type and its instance variable values.

42 CHAPTER 3. CLASSES AND OBJECTS

The value of “design”

Before we move on to implementation, take a step back for a mo-
ment and consider the information contained in that Figure 3.1.

Suppose you were given the job to write a car maintenance tracking
program, and you were getting started figuring out how to accom-
plish that. I think you’ll agree that if someone handed you that
diagram, it would be valuable indeed. There’s no code in it per se,
but a great deal of the work has already been done for you! You
already know what to name your class, the names and types of all
its constituent variables, and what methods its objects should sup-
port. With the diagram alone, I’d say 70% of the work has been
done for you.

The blueprint communicates a ton of information about decisions
that have already been made. With your structure defined, you
now just need to bust out a hammer and some nails.

3.3 Classes in Java

In Java, every class is in its own file4 named the same as the name
of the class (including the capital letter) with a .java extension.
Operationally, we can use vim to create it and edit it:

$ vim Car.java

The skeleton of any class file – after the package and import state-
ments we’ll talk about later (p. 105 and p. 125, respectively) – is
the class definition, with curly braces:

class Car {

}

4Technically there can be some exceptions to this, but don’t worry about
them now.

3.3. CLASSES IN JAVA 43

You may be used to putting the word “public” before the word
class here. For now, we won’t do this, and I’ll encourage you to
ditch the habit of making classes public by knee-jerk reaction. As
we’ll learn, you want to lean towards making things “as private as
possible” until you have reason to do otherwise.

Instance variables in Java

Instance variables go directly inside the class definition, and outside
of any method:

class Car {
String make, model;
int yearsOld;
int odo;
double galsRemaining;
double sizeOfTank;
double gasMileage;

}

You may be used to seeing the word “private” before each instance
variable, and I do applaud that practice. More on that later. For
now, we’ll leave it off just because it’s not necessary to compile.
Realize that it’s not the word private that makes something an
instance variable; rather, it’s the fact that it’s defined directly inside
the class, rather than within a method.

Constructors in Java

Next on the diagram is our constructor. We put in the boilerplate
to get us started:

class Car {
...

Car(String make, String model) {

}
}

44 CHAPTER 3. CLASSES AND OBJECTS

and now for the first time we have to actually think.

A constructor, as I said, is automatically called whenever an object
comes into existence. This is our “hook” to set up the object for
success when methods are called on it later. Think of it this way:
your constructor is called whenever a new object is about to come
off the assembly line and enter the real world. Your job in the
constructor is to do everything necessary to make sure it’s ready
for prime time.

Often this will involve initializing the instance variables to reason-
able values. Sometimes it will include other things, like registering
its existence in some global repository of objects, or initializing a
connection to a network, or writing itself to a database. The key
question to ask yourself is, “what do I need to do to ensure this
object is ‘legit’ and doesn’t break anything when it’s being used?”

Analyze this

In our case, initializing the instance variables are all we need to do
in the constructor. First, let’s set the object’s make and model to
what was passed:

class Car {
...

Car(String make, String model) {
this.make = make;
this.model = model;

}
}

If this is the first time you’ve seen the odd word “this” in a program,
have a good chuckle. What a weird word choice! But Gosling &
Co. chose this word to denote a central OO programming concept.
The word “this” means one of two different things, and they both
need to be memorized:

3.3. CLASSES IN JAVA 45

1. Inside a constructor, “this” means “the object that is cur-
rently being instantiated.”

2. Inside a method, “this” means “the object the method was
called on.”

×. (Anywhere else, “this” is illegal.)

It’s weird and meta and self-referential, but it’s also necessary.
There are times when we need to have a name for “the very ob-
ject I’m ‘in’ right now,” and “this” is our (awkward) name to refer
to that.

So in our constructor, when we say “this.make” we mean “the
make instance variable of this very object that is in the process of
being birthed.” We set that to the make argument that was passed
to the constructor. Ditto with model. Oftentimes, using this is
optional, but in the present case it’s required because we named
our argument the same as the instance variable, and there has to
be a way to distinguish between the two.

Now for our other inst vars. Some of them make sense to be set to
zero:

class Car {
...
Car(String make, String model) {

this.make = make;
this.model = model;
this.yearsOld = 0;
this.odo = 0;
this.galsRemaining = 0.0;

}
}

since brand new cars are in fact zero years old, have a 000000
odometer, and have no gas in their tank (maybe). Zero values
for the other two don’t make sense, however; brand new cars still
have a gas tank of a certain size, and they certainly get more than
0 mpg. For this example, I’m going to go with a very limited notion
of automotive properties:

46 CHAPTER 3. CLASSES AND OBJECTS

class Car {
...
Car(String make, String model) {

this.make = make;
this.model = model;
this.yearsOld = 0;
this.odo = 0;
this.galsRemaining = 0.0;

if (make.equals("Chevy") || make.equals("GM")) {
sizeOfTank = 21;

} else {
sizeOfTank = 13;

}
if (make.equals("Chevy") && model.equals("Malibu")) {

gasMileage = 3;
} else {

gasMileage = 24;
}

}
}

I’m totally not bitter about my car’s gas mileage, by the way.

Methods in Java

The other methods follow a similar syntactic pattern. But it’s super
important to keep this truth in the front of your mind: because they
are methods (not functions), they are called on an object. That
means that you can refer to instance variables inside of them –
and when you do, you’re talking about the instance variables of the
object the method was called on. Put another way, you’re talking
about the instance variables of this.

“Client code” and thinking reactively

When you write methods in an OO program, you have to think
reactively, not proactively. What I mean is this. When you write a
procedural, old school program, you’re the one in control. You set
the agenda. In your main() you say, “first do this, then do that;
create these three variables, perform a computation, and then print
the result.”

3.3. CLASSES IN JAVA 47

We all learned how to program this way. But in OO, you kind of
have to think backwards from that. Writing a method isn’t like
calling it; instead of giving orders, you’re providing a service to
whoever called you. So when you write a method, you have to
think, “okay, some other part of the code is now calling me, for
reasons of its own. What do I do in response to that?”

Our term for “that other part of the code that is now calling me”
is client code (or sometimes just “a client.”) The word “client” is
used in a lot of different ways in high-tech, but here we just mean
“the code that wants to use a particular object.” The word connotes
a respected customer, whom we want to treat well.

Very well, some client code calls one of our methods. How should
we react?

Often we’ll react by updating the object’s state to reflect what
should happen to it as a result of the method being called. Some-
times we’ll produce (return) a value that is stored by the object in
question or computed on the fly. Other times we’ll trigger some side
effect, like printing to the screen, writing to a database, or calling
some other method(s) on the same or a different object.

This is best seen through examples. Let’s implement5 the .fillUp()
method first. Don’t think about Java; think about cars. If I fill up
a car, what happens?

Does the make or model or mileage change? Of course not. The
amount of gas in the tank does. And “fill ’er up” means to raise it
to its maximum. The correct implementation of .fillUp(), then,
is simply:

class Car {
...
void fillUp() {

galsRemaining = sizeOfTank;
}

}

5The verb to implement means “to take a design and actually build it
out.” It is a synonym for the verb to code.

48 CHAPTER 3. CLASSES AND OBJECTS

We could equally well have written this as:

class Car {
...
void fillUp() {

this.galsRemaining = this.sizeOfTank;
}

}

to be explicit that we’re talking about two instance variables here,
and assigning the value of one to the other. It’s a matter of style.

In the same vein, we ask ourselves, “suppose some client code asks
me what percentage full my tank is. What answer do I give?” The
proper response involves these same two inst vars and a little math:

class Car {
...
double getTankPerc() {

return galsRemaining / sizeOfTank * 100;
}

}

I chose to omit this, but again it’s a personal choice.

Some methods, like accessors, are no-brainers. Here’s a getter:

class Car {
...
String getModel() {

return model;
}

}

If a client asks me what my model is, I just tell them my model,
duh. A setter generally looks like this:

class Car {
...
void setMake(String make) {

this.make = make;
}

}

3.3. CLASSES IN JAVA 49

Finally, what if a client instructs me to drive n miles? How should
my internal state be adjusted to reflect that?

This is the most difficult one, and again it requires you to think
about cars rather than about Java. Mentally run through the vari-
ables we’ve chosen to represent a car, and ask yourself which ones
need to change, and how? You’ll realize that the odometer and
the gas tank level are the two we need to modify. When someone
drives a car n miles, the odometer needs to increase by n miles (else
it ain’t legal); also, the gas tank needs to be reduced by n

m gallons,
where m is the car’s gas mileage in mpg. So here we go:

class Car {
...
void drive(int numMiles) {

double galsBurned = numMiles / this.gasMileage;
this.galsRemaining = this.galsRemaining - galsBurned;
this.odo += numMiles;

}
}

This time, I did include the this’s where appropriate, since we also
have a couple of local variables involved and I wanted to be explicit.
Our math is a mix of function parameters, temporary variables, and
permanent attributes of the Car.

“Static methods” and “static inst vars”

Now as I mentioned on p. 38, some “instance variables” are actually
not instance variables at all, but rather class variables. For a class
variable, all objects of that class (in the present example, all Car
objects) would share the same value for the variable, rather than
each object getting its own copy. This is rare, but it does happen.

Also, recall that in unusual cases a “method” might not be a method
at all, but just a regular function that takes arguments and returns
a value. With such a function you don’t call it on a particular
object, but rather “just call it.” Again, this is the exception, not
the norm.

50 CHAPTER 3. CLASSES AND OBJECTS

These situations are similar in that both of them seek to associate
something (a variable or a subroutine) with the class as a whole,
rather than with individual instances. And that’s why the syntax
for them is the same. In both cases, the way to make them happen
in Java is the static keyword.

It’s actually hard to think of good examples of class variables (some-
times called “static instance variables,” an oxymoron that drives me
nuts). But I’ll try. Suppose we want to keep track of the number
of Cars that have been created. This is an integer, of course, but
importantly we don’t want to make it an instance variable, since
it’s a property of “cars in general,” not any particular car.

Additionally, we need to be able to access it, and so we’ll use a
“static method” (a.k.a. a regular function, defined on the class) that
will retrieve its value. Putting it all together, we get:

class Car {
...
static int numCars;
...

Car(String make, String model) {
...the rest of the constructor...
numCars++;

}
...
static int getNumCars() {

return numCars;
}

}

By marking numCars static, we ensure that unlike make, model, and
the rest, there’s only one numCars variable no matter how many
Cars we instantiate. Note that the way to call the getNumCars()
function is like this:

int n = Car.getNumCars(); // Correct!

3.4. OBJECTS IN JAVA 51

not like this:

int n = johnsMercedes.getNumCars(); // NOPE

This is the exact opposite of the situation on p. 39, and it makes
sense because we aren’t asking a specific car (like John’s Mercedes-
Benz) how many cars exist. We’re just asking the universe that
question.

Also notice that we incremented numCars in our class constructor.
This is so that as soon as each Car comes off the assembly line (no
pun intended), we’ll automatically click the turnstile and count it
towards our total.

3.4 Objects in Java

We’ve now coded a class from the ground up (the complete code
listing is in Figure 3.3.) We did this so clients can instantiate objects
of that type and do something with them. Let’s make a simple
main() method to do just that.

You’d be surprised how many beginning programmers try to drive
23 miles like this:

public static void main(String args[]) {
drive(23); // WRONG!

}

or this:

public static void main(String args[]) {
Car.drive(23); // equally WRONG!

}

Yes you’ll get compiler errors, but those errors reflect a deeper and
more fundamental misunderstanding. In OOP, you have to call a
method on an object. Conceptually, nothing else makes sense. In

52 CHAPTER 3. CLASSES AND OBJECTS

real life you don’t “drive in general,” and you don’t ask “automo-
biles in general” to drive you places. Instead, you have to drive a
particular car somewhere. Here’s how:

public static void main(String args[]) {
Car minivan = new Car("Toyota","Sienna");
minivan.drive(23); // correct!

}

The keyword “new” is utterly crucial here. In Java, the only way to
instantiate an object is to use new. It causes a fresh object of the
appropriate type to spring into existence, complete with memory
to hold its instance variables. And the appropriate constructor is
called, of course, to set that object up for prime time.

We got errors before because we didn’t even have a car to do any-
thing with. There was no memory set aside, no constructor called
to set up the object, nothing. We tried a shortcut, and that was
madness. But now that we know how to instantiate objects, we can
do so to several and create a whole new world, as in Figure 3.2 on
p. 53. All the code in that figure is legit, and shows that our Car
class has uses.

Printing an object

One last thing before we bring this chapter to a close. Suppose
we’re debugging our program, and we want to print out the values
of various variables to help us hunt down an error. Printing an int
or other standard type is straightforward:

int numEnchiladas = 3;
System.out.println("We'll eat " + numEnchiladas + "enchiladas.");

and will produce a message like “We’ll eat 3 enchiladas.” What
happens, though, if we print out an object, like a Car? How can
such a complex entity be reduced to a string of text?

Heck, let’s try it:

3.4. OBJECTS IN JAVA 53

public static void main(String args[]) {

// The archaic Davies family vehicles
Car minivan = new Car("Toyota","Sienna");
minivan.setYear(2002);
Car stephensLemon = new Car("Chevy","Malibu");
minivan.setYear(2001);

// Grammy lives in Colorado
Car grammysCar = new Car("Lexus","ES");
grammysCar.setYear(2021);

// Caravan to Disneyworld! (Grammy's meeting us there.)
minivan.fillUp();
minivan.drive(500);
stephensLemon.fillUp();
stephensLemon.drive(500);
System.out.println("The van is " + minivan.getTankPerc() +

"% full, while the chevy is " +
stephensLemon.getTankPerc() + "% full.");

grammysCar.drive(1899); // a long way from Colorado
}

Figure 3.2: A client main() program that uses the Car class.

Car porsche = new Car("Porsche","Carrera");
porsche.setYearsOld(2);
System.out.println("My car is: " + porsche + ".");

The output we get is:

My car is: Car@4aa298b7.

Whoa. The word “Car” is perhaps not surprising, but what’s the
rest of that gunk?

It turns out that Java’s default way of rendering an object as a
String is to concatenate the name of the class, an “at” sign, followed
by the memory address in which it is stored. We’ll talk much more
about memory in the next chapter. For now, just think of the

54 CHAPTER 3. CLASSES AND OBJECTS

memory address as a unique number6 that identifies the object,
like an SSN.

The cool thing is, we can override this functionality at will, and
change the way Cars will be printed. Check it out. Create a method
in the Car class called .toString(). It must:

1. be called exactly “.toString()”.
2. take no argument.
3. return a String.
4. have the word public immediately before the return type.

(We’ll talk a lot about what public means in future chapters.
For now, it just has to be there.)

Here’s one:

public String toString() {
return "a " + yearsOld + "-year-old " + make + " " + model;

}

We’re assembling various aspects of the vehicle into a sensible, read-
able string. Now, when we run the same code as above, our output
is this:

My car is: a 2-year-old Porsche Carrera.

Notice that we didn’t explicitly ever call .toString()! Instead,
we just used a Car object in a context in which a String was
required, and Java faithfully called our method instead of the one
that generated the memory address. Pretty cool.

This is actually our first foray into a really deep and powerful tech-
nique called “inheritance,” about which much more will come in
later chapters. For now, just grasp the idea that Java lets us over-
ride its general behavior for specific kinds of objects, which gives
us tremendous power and flexibility.

6Yes, it is indeed a number, despite the fact that it has letters in it like ’a’
and ’b’. It’s printed here in hexadecimal, which is a base-16 number system
instead of the base-10 system non-computer-science humans use.

3.4. OBJECTS IN JAVA 55

class Car {
String make, model;
int yearsOld, odo;
double galsRemaining, sizeOfTank, gasMileage;
static int numCars;

Car(String make, String model) {
this.make = make;
this.model = model;
yearsOld = 0;
odo = 0;
galsRemaining = 0;
if (make.equals("Chevy") || make.equals("GM")) {

sizeOfTank = 21;
} else {

sizeOfTank = 13;
}
if (make.equals("Chevy") && model.equals("Malibu")) {

gasMileage = 3;
} else {

gasMileage = 24;
}
numCars++;

}

public String toString() {
return "a " + yearsOld + "-year-old " + make + " " + model;

}

String getMake() { return make; }
String getModel() { return model; }
int getYearsOld() { return yearsOld; }
void setYearsOld(int x) { yearsOld = x; }

static int getNumCars() { return numCars; }

void fillUp() {
this.galsRemaining = this.sizeOfTank;

}

double getTankPerc() {
double perc = galsRemaining / sizeOfTank * 100;
return perc;

}

void drive(int numMiles) {
double galsBurned = numMiles / gasMileage;
galsRemaining = galsRemaining - galsBurned;
odo += numMiles;

}
}

Figure 3.3: A complete Java implementation of the Car class.

Chapter 4

Memory matters

This chapter is near and dear to my heart. The concepts here
are vastly undertaught by computer science educators today, and
yet they are at the epicenter of most intermediate students’ under-
standing (or misunderstanding). A failure to master this material
slaps a hard ceiling on what you can accomplish as a programmer.
Successfully mastering it is the key to the next level.

The key idea is that there are two ways of looking at a computer pro-
gram. One is to look at the static lines of code as they are written
on a screen or on paper. This is how novices think about programs:
they look at the lines of code, and ask themselves whether lines
need to be added, removed, changed, or moved.

The other way is to think about what happens to the computer’s
memory as the program runs, and how its variables and structure
change as the program unfolds. Whether they realize it or not,
this is how all proficient programmers think. It turns out that
the “purpose” of almost any line of code is to change the
contents of memory in a particular way. The name of the
game is recognizing what impact on memory each line of code has
– and conversely, what line of code is required to make a particular
change to memory.

57

58 CHAPTER 4. MEMORY MATTERS

4.1 Memory diagrams

The focal point of this chapter will be the memory diagram,
which incorporates the UML object representations we discussed in
section 3.2. A memory diagram depicts the contents of the com-
puter’s memory at a snapshot in time. At any given moment, as a
program is running, you could say “Freeze!” and look at the memory
diagram. You’d see the exact state of the system at that moment.

The stack and the heap

A program’s memory, it turns out, is divided into two realms with
funny names: “the stack” and “the heap.” It is vital to un-
derstand the difference between the two, and which one is used
for what. The stack contains statically-allocated, and the heap
dynamically-allocated, memory. We’ll unpack what all this means,
but first let me show you a full list of differences:

stack heap
statically-allocated dynamically-allocated
holds named things holds unnamed things

holds primitive types and references holds objects1

items have limited lifespan items have unlimited lifespan2

This is best understood by example, and in fact can be illustrated
with just a small function:

void illustration() {
int year = 2021;
Car minivan = new Car("Toyota","Sienna");

}

1This is true in Java, but C++ permits programmers to store objects on
the stack as well as the heap. I will argue that’s universally dumb, and it’s a
large part of what makes programming in C++ difficult: you have to account
for that occurrence with a ton of tedious and error-prone bookkeeping.

2Not completely unlimited, but things on the heap stick around as long as
they’re needed, rather than evaporating at the end of their current function.

4.1. MEMORY DIAGRAMS 59

This teensy function, when it runs, produces memory contents as
depicted in Figure 4.1. Let’s go through it carefully.

Figure 4.1: The stack and the heap.

The first line of illustration() creates a simple integer variable
and sets it equal to 2021. Since an int is a primitive type3,
it is stored on the stack. “On” the stack should make you think
of layering items vertically on a surface. Before this line of code
executed, nothing existed in the program’s memory at all, so the
stack was nothing but a bare floor (think of it as a horizontal line).
Our first variable goes right on top of that floor.

There’s a ton packed into that second line of code, so hold on to your
seats. The first thing to realize is that it encompasses both stack
and heap. We have a named reference variable called minivan,
which, as with all named things, goes on the stack (right on top of
year). A “reference variable” means a variable that has the ability
to reference (or “refer to,” or “point to”) an object. However, the
object itself is created in the heap, because in Java that’s where all
objects live. The word new is a “heap word”: using it is the only
way to make an object at all, and therefore, the only way to make
something on the heap. Finally, to carry out the equals sign (“=”)
in that line of code, we draw an arrow from minivan to the object
to indicate that’s what it’s currently referring to.

Okay, now a head-scratcher. Look at Figure 4.1 again. What would

3If you’ve never heard this lingo, a “primitive type” is one of the very basic
lower-case Java variable types, like int, double, or boolean. Importantly, a
primitive type is not an object.

60 CHAPTER 4. MEMORY MATTERS

void illustration() {
...
Car other = new Car("Ferrari","F355");
Car t = minivan;
minivan = other;
other = t;

}

Figure 4.2: (Continuing the previous example.)

you answer if I asked you, “what’s the name of that blue object?”

If you’re like 99% of novice programmers (including myself, long
ago), you would confidently answer, “minivan. Its name is minivan.”
That seems to make perfect sense. But unfortunately it is wrong.
The truth is that the object has no name.

Again, you may think I’m being pedantic. Let me demonstrate why
I’m not. Suppose we expanded our previous code with four more
lines, as depicted in Figure 4.2. Study it carefully.

Let’s deal with the first two of these lines. The first one creates a
new reference variable called other on the stack, and points it to
a brand new Car object (unrelated to our Toyota Sienna) in the
heap. Notice that unlike with the stack, I didn’t carefully put the
new Car exactly on top of the first one. Instead, I just threw it in
there helter skelter. This is how the heap works, and in fact why
it’s called a “heap”: it’s a disorganized mess of stuff that comes and
goes in response to the program’s unpredictable needs. The stack
is as tidy as the Library of Congress; the heap is a teenage boy’s
room. Seems weird, but it turns out things have to be that way.

The second line creates a new stack variable called t but emphat-
ically does not create a new Car object. Let that sink in deeply.
Many programmers, upon seeing a line begin with “Car t = ...
would naturally assume that line is making a new Car. But it’s ac-
tually only creating another variable that has the potential to refer
to a Car. And in fact, after the equals sign, we do point it to a
Car...but one of the ones we’ve already instantiated (namely, the
Sienna).

4.1. MEMORY DIAGRAMS 61

Figure 4.3: After executing the first two lines of code Figure 4.2.

The result of executing these two lines is shown in Figure 4.3. Stare
very carefully at that figure and mull over each box and line. We
have four named variables, three of which are of type Car, and yet
there are only two Car objects because we only executed two new’s.
And two of our named variables – t and minivan – are pointing
to the same object. This turns out to be okay. We’ll have multiple
references to the same object all the time, and it’s entirely healthy.
What’s critical not to miss is that t and minivan are not referring to
identical copies of the Car, but literally the same Car. If we were to
change the state of t’s Car by, say, increasing its odometer instance
variable, minivan would instantly experience the same change. And
that’s because they are the same.

Okay, now the punchline of this whole example. I’m going to com-
plete the bait-and-switch, just to prove I was correct back when I
said “the name of that first blue box is not minivan.” Let’s do the
second two lines of code in Figure 4.2:

...
minivan = other;
other = t;

The result of those two operations is to change what the other
and minivan variables are pointing to. Memory now looks like
Figure 4.4. And so I ask you again: “what’s the name of that
Toyota Sienna object?” I think you’ll agree that minivan is most

62 CHAPTER 4. MEMORY MATTERS

Figure 4.4: Finally, after executing the rest of code Figure 4.2.

certainly not its name. Two valid ways to refer to it are t and
other, both of which point to it. But neither one is its name.
Objects simply have no name.

Names are ephemeral, momentary: they’re only used temporarily
so we can get at the stuff in the heap, which is ultimately what
matters.

Let me conclude this example by explaining what I meant earlier
about “limited lifespans.” After executing the “other = t;” line,
we are done with the function. It’s time to return control to whoever
called illustration() in the first place. And at this point, all of
our named variables – t, other, minivan, and even year – cease
to exist. Their destiny was only to provide service during the time
that illustration() was being executed.

But the stuff on the heap lives on after. Long after a function
is completed, the objects it may have created or changed have a
presence that will affect the behavior of other, future functions. In
this case, since we weren’t passed any arguments and didn’t return
anything, our Toyota and Ferrari will actually peacefully go away.
But in general there are meaningful, long-term effects, and in the
next section we’ll see an example in action.

Most methods are just like this. They create a few named variables
so they can change the contents of the heap in some way, and then
clean up their toys and return with the heap thus changed. That
is their raison d’etre. It’s a short but happy life.

4.2. CALLING FUNCTIONS 63

class Simulator {
public static void main(String args[]) {

int year = 2021;
String greeting = "Play ball!";
Ballplayer oldGeezer;

ArrayList yankees = buildDaTeam();
int rosterSize = yankees.size();

}

static ArrayList buildDaTeam() {
String name = "Yankees";
int year = 1927;
ArrayList team = new ArrayList();

Ballplayer ruth = new Ballplayer("Babe Ruth");
ruth.setUni(3);
ruth.setPos("OF");
Ballplayer gehrig = new Ballplayer("Lou Gehrig");
ruth.setUni(4);
ruth.setPos("1B");
Ballplayer babe = ruth;
babe.setUni(3); // (Pointless, as it turns out.)
babe.setPos("OF"); // (Pointless, as it turns out.)
team.add(babe);
team.add(gehrig);
team.add(ruth);

return team;
}

}

Figure 4.5: Some code that calls a function.

4.2 Calling functions

One thing our previous example didn’t include was calling a func-
tion or method. In this section, we’ll see what happens to memory
when we do this. There will probably be a few eye-openers for you.

First, take a look at our code listing (Figure 4.5). We’ll switch from
an automotive domain to part of a baseball simulator.

Let’s see how the memory diagram emerges line-by-line in response

64 CHAPTER 4. MEMORY MATTERS

Figure 4.6: Memory contents after executing the first three lines of main().

to the code executing.

First, let’s execute the first three lines of main() and “Freeze!” the
picture. The result of these lines is shown in Figure 4.6. There
are three new things here worth mentioning. First, notice that
our greeting variable, although it is a String-with-a-capital-S and
therefore an object, is shown on the stack, just like the int year
is. The reason for this is that Strings are a kind of in-between case
(between primitive types and objects) – they’re neither fish nor
fowl. Technically they’re objects, but Java actually treats them
somewhat specially, and even has an inline syntax to create what
are actually instances, so it ends up making more sense to treat
them as primitive types on the stack. That’s what we’ll always do
with Strings.

Null references and NPEs

The next new thing is that bizarre symbol next to oldGeezer.
Whazzat? If you look at the code listing, you’ll see that we declare
a variable of type Ballplayer named oldGeezer, but we never set
it equal to a new instance, nor to anything else for that matter.
This means that oldGeezer, which as you’ll recall is a “reference
variable” (capable of referring to a Ballplayer) currently refers to
nothing. In Java, this is called a null reference (or null pointer)
and is indicated with the keyword null. In fact, this line of code
has exactly the same effect as the one above:

Ballplayer oldGeezer = null;

4.2. CALLING FUNCTIONS 65

Some people prefer to be explicit like this. I don’t care either way;
just realize that at this point, if you attempted to call any method
on oldGeezer, like:

Ballplayer oldGeezer = null;
oldGeezer.strikeout();

you will then be hit with the most ubiquitous of all Java run-time
errors, the null-pointer exception (or “NPE”):

Exception in thread "main" java.lang.NullPointerException
at Simulator.main(Simulator.java:5)

This is quite reasonable behavior, if you think about it. What can
Java do if you try to “call a method on an object” but there is no
such object? It can only throw up its hands, which it does here.

Remember: an NPE means you tried to call a method on an object,
but the variable name you called it on wasn’t actually an object;
it was null. The way to diagnose an NPE is to look at the line
number it gives you, and find the dot (“.”) (or dots) on that line.
The variable or expression to the left of one of those dots is an
uninitialized, null reference. Guaranteed.

Stack frames

The last new thing in Figure 4.6 is easy to miss: it’s the word
main() off on the left-hand side of the diagram. What this means
is that all the variables to the right of it “belong” to the main()
function. This group of variables, which goes with a particular call
to a function4, is called a stack frame. The way a program works

4Note carefully that a stack frame is associated with each call to a func-
tion, not each function. This may seem pedantic, and it is...until we consider
recursion. A recursive function will call itself, which will call itself, which will
call itself...many times. Each call to the function generates its own stack frame,
which is separate from all the others. This is how recursive functions are able
to work without clobbering the values of the variables contained in previous,
still-active calls.

66 CHAPTER 4. MEMORY MATTERS

is this: every time a function is called, a new stack frame is “pushed”
on top of the stack (above a horizontal line that we’ll draw.) While
we’re in the function, Java can only see the variables in that current
stack frame. The ones in main()’s stack frame, or any other stack
frame for currently-in-progress functions, are safely nestled away
to be resumed later, but they are not immediately available to the
program.

This is exactly how it should be. If we call a function foo() from
within a function bar(), control transfers to foo(). Now how could
foo() possibly refer to bar()’s variables? Heck, whoever wrote the
code for foo() didn’t even know it would be called from bar()! Any
other function could have called it just as well, in which case bar()’s
variables wouldn’t even exist. All we know for sure is that foo()
was called from “somewhere,” and thus must work no matter what
the context. If Java allowed us to talk about variables in another
stack frame, our function would instantly become non-reusable; it
would only make sense if called from some specific other function.
And that defeats most of the purpose of even having a function.

Okay, now the big moment. We run this line:

ArrayList yankees = buildDaTeam();

which calls the buildDaTeam() function and transfers control to it.

Hang on to your hats. A lot happens here. First, a new stack frame
is created, labeled buildDaTeam() in the diagram to carefully dis-
tinguish it from the other. Then, buildDaTeam() starts executing.
Let’s do the first three lines. We create two new variables on the
stack (a String and an int). One of these (year) has the same
name as a variable that was declared down in main(). This is per-
fectly okay, and the two years in fact have nothing whatsoever to
do with each other. As long as buildDaTeam() has control, “year”
means the top year, in buildDaTeam()’s stack frame.

In the third line, we create our first heap object of the entire pro-
gram. It is created (as all objects are created) with the new keyword.
This newly instantiated thing is an ArrayList, and we’ll draw it

4.2. CALLING FUNCTIONS 67

Figure 4.7: Memory contents after calling the function and executing the
first three lines of buildDaTeam().

as indicated in Figure 4.7. It has some contents, which is a zero-
based, array-ish list of references, each of which has the potential
to point to an object.5 Currently none of them do so, and therefore
the diagram shows the null symbol for each.

Freeze! The program’s memory now looks like Figure 4.7. Run your
eyeballs over it and make sure you understand every box and line.

Object craziness

Now for the next part of code listing 4.5. These three lines:

...
Ballplayer ruth = new Ballplayer("Babe Ruth");
ruth.setUni(3);
ruth.setPos("OF");
...

5You may be more used to seeing ArrayList<Ballplayer> instead of just
plain ArrayList, which actually is a better choice. When we declare something
as type “ArrayList<Ballplayer>” we’re saying “Java, please prevent me from
storing anything in this ArrayList except Ballplayers.” See section 8.3 for
more details.

68 CHAPTER 4. MEMORY MATTERS

instantiate a new Ballplayer object (on the heap, of course) and
set it to some initial values. You need a little imagination to envi-
sion what the Ballplayer class does in response to these method
calls, but only a little: obviously it has a constructor that takes a
String (the player’s full name) and a couple of accessor/mutator
methods to set the player’s uniform number and position.

We then do the same sort of thing again, for another player:

...
Ballplayer gehrig = new Ballplayer("Lou Gehrig");
gehrig.setUni(4);
gehrig.setPos("1B");
...

to get another one. Then, we do this:

...
Ballplayer babe = ruth;
babe.setUni(3); // (Pointless, as it turns out.)
babe.setPos("OF"); // (Pointless, as it turns out.)
...

which you know by now does not instantiate a new object. (After
all, there’s no new.) Instead, the first line points the new variable
babe at the same object ruth is currently pointing to. Get very,
very comfortable with the idea that except for primitive types, “=”
in Java does not do anything resembling a “copy” operation. It
simply makes a reference variable refer to something else. So we now
have three variables of type Ballplayer, but only two Ballplayer
objects.

Finally, we add these players to our ArrayList:

...
team.add(babe);
team.add(gehrig);
team.add(ruth);
...

4.2. CALLING FUNCTIONS 69

Figure 4.8: Memory after all the object creation done in buildDaTeam().

Stare closely at all those crazy arrows in Figure 4.8 and make sure
you understand where they’re all going and why. Our ArrayList
object, instead of showing null pointers, now has each of its slots
pointing to a particular Ballplayer object. Elements 0 and 2 point
to the same object, of course, because we added “babe” and later
“ruth” and those two variables are pointing to the same object.
(So we’re cheating here, baseball-wise: you can’t actually have the
same player twice in the lineup! This is just an example.)

“I shall return”

And now, we’re ready to polish off this bad boy.

...
return team;

}

That “return” statement packs a wallop. When the function is
completed, two huge things happen. First, the function’s stack
frame is entirely wiped out. Like, off the face of the planet. Every
single variable in there is irrevocably deleted and never mentioned
again.

70 CHAPTER 4. MEMORY MATTERS

Figure 4.9: What memory looks like when we reach the end of main().

When students first hear this, they’re sometimes dismayed – “what’s
the point of calling a function then, if every single thing it creates
is erased?” Ahhhh...but they’re only thinking of the stack, not the
heap. The heap-ish things that a function accomplishes do live on,
and as I said earlier, they are the reason the function existed in the
first place. Almost all functions’ sole job is to inspect or manipulate
the heap in some way.

When I say the stack frame is wiped out, here’s what’s wiped out:
(1) all the named variables in the stack frame, (2) all the primitive
type values in the stack frame (green boxes), (3) all the arrows
emanating from the stack frame’s reference variables, (4) the word
on the side of the diagram that names the function, and even (5)
the horizontal line that separates it from the stack frame below.

The result is that the top stack frame gets vaporized, leaving main()’s
stack frame open to the outside air. And that is exactly what we
want, because it’s main()’s turn to take over now. Note that all
the heap stuff is still there: objects on the heap have an unlimited
lifespan, you’ll remember.

The other thing the return statement does, of course, is put the

4.2. CALLING FUNCTIONS 71

function’s return value in the proper place, just before it’s nuked.
In this case, since our original line of code was:

ArrayList yankees = buildDaTeam();

it makes yankees refer to the object that was “returned,” namely
the ArrayList that the shortly-to-die team variable is pointing to.

We run one more line of code just to show we can do something
with the returned object (“int rosterSize = yankees.size();”)
and the final result is as in Figure 4.9. There’s no record of us
having called a function at all – buildDaTeam() simply did its job
dutifully and quietly, and main() gets to reap the result.

Calling a function from a function

By the way, this point is probably obvious by now, but let me
clarify anyway: if you call a function, and that function itself calls
another function, the same thing happens. The second function
gets its own stack frame with its own variables, while both the first
function and main() both get put on pause. There are at that
moment three stack frames. When the second function returns,
its stack frame disappears and the first function becomes active;
and when the first function returns, its stack frame disappears and
main() becomes active.

The terminology we use to describe this is somewhat obscure: when
we create a new stack frame for a newly-called function we call it
pushing a new frame on the stack. When we return, and get rid
of it, we call it popping the frame off the stack. Push and pop
are lingo you’ll see in Data Structures class, when a data structure
called a “stack” is introduced. That stack data structure is a more
general category of memory management technique, of which “the
stack” of our present chapter is an example.

Anyway, this whole push-a-frame-every-time-you-call-a-method thing
(and pop-the-top-frame-every-time-you-return thing) is central to
how any computer program operates. It’s how your program breathes.

72 CHAPTER 4. MEMORY MATTERS

class Ballplayer {
String name, position;
int uni, numHits, numAtBats;

Ballplayer(String name) {
this.name = name;
numHits = 0;
numAtBats = 0;

}

void strikeout() {
numAtBats++;

}

void getAHit() {
numHits++;
numAtBats++;

}

double getBattingAverage() {
return ((double) numHits)/numAtBats;

}
...

}

Figure 4.10: Part of the Ballplayer class.

4.3 Calling methods

The mechanics of calling a function are just the same as when calling
a method, except for one thing: this. It turns out that when you
call a method on an object, you’re adding one more thing to the
stack: a reference to the object the method was called on. And
that, of course, is precisely what “this” means.

Let’s pan over to a different part of our fictitious baseball simulator:
the Ballplayer class itself. Part of the code for it is in Figure 4.10.6

We’re going to have a different class for pitchers, since they have dif-

6Apologies to non-baseball fans. All you really need to understand this
example is that in baseball, every batter accumulates a number of “at bats”
(chances to come to the plate and hit against a pitcher) and a number of “hits”
(times he/she actually hit the ball and made it at least to first base). A player’s
“batting average” is the hits over the at bats; it ostensibly tells you how likely
(on a scale of 0 to 1) that player is to get a hit if he/she bats.

4.3. CALLING METHODS 73

class Pitcher {
String name, handedness; // L or R
int uni, numKos;
double koDominance; // between 0 and 1
static java.util.Random rng = new java.util.Random();

...
void face(Ballplayer batter) {

double koRandNum = rng.nextDouble();
double batterRandNum = rng.nextDouble();
if (koRandNum < koDominance) {

batter.strikeout();
this.numKos++;

} else {
if (batterRandNum < batter.getBattingAverage()) {

batter.hit();
} else {

batter.strikeout();
numKos++;

}
}

}
}

Figure 4.11: Part of the Pitcher class.

ferent stats (see Figure 4.11).7 The only method we’ll show on the
Pitcher class is .face(), which is where a pitcher “faces” (pitches
to) a batter in our simulation. The result will either be strikeout
or a hit in our extremely simplified view of the baseball world.

One item of note is the static variable rng, which stands for
random number generator. It’s an instance of the java.util.Random
class, which the Java API provides to roll random numbers. Ev-
ery time you call .nextDouble() on a Random, it generates a new
random number between 0 and 1. It makes sense for this to be
a static variable, since the random number generator itself is an
object that all objects will share and use.

The specifics of the .face() algorithm aren’t important to un-
derstand. What is important is what happens in memory as this

7Here, we’re going to model each pitcher as having a “koDominance” (“KO”
is baseball lingo for “strikeout,” btw). This is a number between 0 and 1 indi-
cating the probability of overwhelming the batter with a strikeout without that
batter being able to do anything about it.

74 CHAPTER 4. MEMORY MATTERS

public static void main(String args[]) {

Ballplayer joltinJoe = new Ballplayer("Joe Dimaggio");
joltinJoe.setUni(5);
joltinJoe.setPosition("OF");

Ballplayer theSayHeyKid = new Ballplayer("Willie Mays");
theSayHeyKid.setUni(24);
theSayHeyKid.setPosition("OF");

Pitcher bestOfAllTime = new Pitcher("Sandy Koufax");
bestOfAllTime.setUni(32);
bestOfAllTime.setHandedness("L");
bestOfAllTime.setKoDominance(.5);

bestOfAllTime.face(theSayHeyKid);
}

Figure 4.12: A mighty showdown on the diamond.

Figure 4.13: The baseball simulator’s memory immediately before execut-
ing the last line of main() (“bestOfAllTime.face(theSayHeyKid)”).

method is called. Let’s say our main() has the code in Figure 4.12.
After executing all lines but the last one, we have the picture in
Figure 4.13. Take a moment and convince yourself it’s correct in
all details.

And now for the moment we’ve all been waiting for: the first pitch of
a new (fantasy) baseball season, in which Sandy Koufax, the great-

4.3. CALLING METHODS 75

Figure 4.14: Memory while on the last line of .face().

est pitcher of all time, will face down Willie Mays, quite possibly
the greatest hitter of all time. I can’t stand the suspense!!

Figure 4.14 shows how memory looks during this thrilling matchup.
We’re inside the Pitcher’s .face() method, and so it has its own
stack frame as expected. But I want to draw your attention to two
crucial aspects of this diagram:

1. First, notice we have a visitor. On the stack frame, in addition
to the other expected variables, is none other than “this”.
Realize that this is really just a reference variable like any
other. What does it refer to? The object the method was
called on, of course. In this case, it’s Sandy Koufax. How do
we know? Because we didn’t just say “face(theSayHeyKid)”
but “bestOfAllTime. face(theSayHeyKid)”. So the object
that bestOfAllTime refers to will be pointed to by this while
we’re inside the method. Ponder this deeply.

2. Second, recognize that the batter argument – which is a ref-
erence variable of type Ballplayer – is referring to the same
object that theSayHeyKid is pointing to back in main(). It
is emphatically not a copy of the object. That’s critical, be-

76 CHAPTER 4. MEMORY MATTERS

Figure 4.15: The final memory picture. Note the changed inst vars!

cause otherwise our .face() method would have no way of
updating Willie Mays’ stats as a result of this confrontation.8

Drum roll, please, before we hear the announcer: “...and it’s a
scorching four-seam fastball from Koufax: swing and a miss, strike
three!” The way the random numbers turned out in this exam-
ple, Koufax was so overpowering that he struck out Mays without
the latter having a fighting chance. (See how koRandNum was less
than Koufax’s koDominance, so he blew him away without the else
statement coming into play – i.e., without Mays’ batting prowess
even having a chance to shine).

Don’t worry, Willie: maybe you’ll get one of your 660 lifetime home
runs next time you’re up to bat. Console yourself with this: a dif-
ferent “Willie” Hall of Famer (Willie Stargell) once quipped, “trying
to hit against Sandy Koufax is like trying to drink coffee with a
fork.”

The last diagram of the chapter, Figure 4.15, shows the situation
when we return to main(). It’s important not to miss the main

8If you learned these terms in 220, this point can be equivalently stated as
follows: “Java uses pass-by-reference for objects, not pass-by-value.” (Java
does use pass-by-value for primitive types, as we’ve seen: ints and such have
their own presence on the stack, and so are copied from stack frame to stack
frame.)

4.3. CALLING METHODS 77

point here: both objects (Pitcher and Ballplayer) have their stats
updated as a result of this showdown. If you’re coming from a
language like C++, which passes objects by value, you might be
raising your eyebrows right about now. Get used to it. In Java,
passing an object to a function/method makes that exact object
available to the function/method, not a copy. And certainly this
is a reference to the very object the method was called on, not a
copy of it. This turns out to be almost always what we want.

Chapter 5

Exceptions

Let’s go back and revisit our .drive() method from the Car exam-
ple on p. 55. It looked like this:

class Car {
...
void drive(int numMiles) {

double galsBurned = numMiles / gasMileage;
galsRemaining = galsRemaining - galsBurned;
odo += numMiles;

}
}

The shrewd reader (and driver!) will realize that this method is a
bit optimistic: when told to drive numMiles, it blindly does so, even
if there’s not enough gas to get that far. We ought to guard against
this kind of wishful thinking by not permitting a drive that’s outside
our range. If told to drive 1000 miles when we only have enough
gas to go 200, we’ll just say “no.” That’s way better than ending
up with a negative gas tank!

The first step in implementing this kind of defensive coding is to
figure out when to refuse to carry out orders. That’s not too hard
in this case: our local galsBurned variable is exactly what we need:
if it turns out to be higher than the gas remaining in the tank, we
are officially in Nonsense Land. A simple if statement can take
care of that.

79

80 CHAPTER 5. EXCEPTIONS

5.1 Bad ways of handling error conditions

The second step is figuring out what to do when this occurs. Most
people’s first instinct is to blare out a siren:

// Inadequate approach #1
class Car {

...
void drive(int numMiles) {

double galsBurned = numMiles / this.gasMileage;
if (galsBurned > this.galsRemaining) {

System.out.println("Not enough gas!!");
}
this.galsRemaining = this.galsRemaining - galsBurned;
this.odo += numMiles;

}
}

This is done in the hopes that someone will hear us and be alarmed.
The problem is, this error will go to the console, where it may or
may not ever be seen; and even if someone notices it, we’ve still
already done the dirty deed. We have a Car object with an illegal
state: a negative gas level.

Slightly better, but still not good enough, is to print the error and
also refuse to carry out orders:

// Inadequate approach #2
class Car {

...
void drive(int numMiles) {

double galsBurned = numMiles / this.gasMileage;
if (galsBurned > this.galsRemaining) {

System.out.println("Not enough gas!!");
return; // <--- NOTICE THIS!

}
this.galsRemaining = this.galsRemaining - galsBurned;
this.odo += numMiles;

}
}

5.2. THE RIGHT WAY: THROWING AND CATCHING 81

Now, in addition to printing the error, we also return from the
method prematurely, instead of carrying out the nonsensical oper-
ation.

The problem with this approach is that the client code is not alerted
that anything went wrong. We’ll see some actual client code in ac-
tion in the next section, but for now just realize that whoever called
.drive(1000) is none the wiser. The client merrily chugs along
thinking that the thousand-mile drive was plain sailing, oblivious
to the fact that no such drive actually occurred.

5.2 The right way: throwing and catching

The right way to handle this is with Java’s Exception mechanism.
We don’t return prematurely, as above; instead, we don’t return at
all. Exceptions are Java’s way of allowing a method not to return,
but rather to raise a big red flag to indicate that carrying out the
method just flat didn’t work. It’s the only responsible thing to do.

Our first step is to “throw an exception” instead of returning. Here’s
how:

// Correct approach (not finished yet)
class Car {

...
void drive(int numMiles) {

double galsBurned = numMiles / this.gasMileage;
if (galsBurned > this.galsRemaining) {

throw new Exception("Not enough gas!!"); // NOTICE!
}
this.galsRemaining = this.galsRemaining - galsBurned;
this.odo += numMiles;

}
}

Operationally, throwing an exception has the same immediate effect
as returning: the method instantly terminates and returns control
back to the client code. The differences, as we’ll see in the next
section, are that the client code is aware that something unusual
happened, does not get a return value, and can take evasive action.

82 CHAPTER 5. EXCEPTIONS

If you try to compile the above code, though, you get an error,
which says:

error: unreported Exception; must be caught or declared to be thrown

It’s actually nice of Java to give this error, and here’s why. Inside
our method, we’ve created a possibility that we won’t return at
all, and will instead barf because of an insoluble problem. Java
requires that if we do that, we ’fess up and declare that this is
a possibility. That prevents unwitting programmers from blithely
calling our method and not accounting for the fact that it might
not even run to completion.

Fixing it is simple; we just change the first line of the function to:

void drive(int numMiles) throws Exception {
...

That first line now says: “you can call me on a Car, pass me an
integer argument, and get no return value. But there’s a possibility
that it won’t work, and you should be aware of that.” It’s only
honest, and as we’ll see, it allows the code that uses Cars to properly
deal with the problem.

5.3 Calling a method that throws Exception

The only remaining fly in our ointment (don’t worry; he’s easily
swatted) is that when client code calls .drive(), it might not neces-
sarily run to completion. In fact, if we compile the above main pro-
gram, we’ll get the same kind of compile error that we did when we
were midway through implementing the Exception-throwing stuff.
It’ll say we’re being unconscionably remiss by refusing to deal with
the error that might occur any time we tell one of our cars to drive.

The Java way to handle this is with a try/catch block. Essentially,
this just builds a little scaffolding around our call to suspicious
methods like .drive() so that if an exception is indeed “thrown”

5.3. CALLING A METHOD THAT THROWS EXCEPTION 83

when we call it, we can “catch” is and do something sensible. Here’s
what the code looks like:

public static void main(String args[]) {
...
// Caravan to Disneyworld! (Grammy's meeting us there.)
minivan.fillUp();
try {

minivan.drive(500);
} catch (Exception e) {

System.out.println(e);
System.exit(1);

}
...

}

Instead of simply calling minivan.drive() and throwing caution
to the wind, we put that code in a try block. The code in a try
block is executed normally, step-by-step, just like anywhere else in
a Java program. But the try block has one or more (here just one)
contingency plans connected to the bottom of it, which can handle
any special (or “exceptional”) conditions. In this case, that call to
drive the minivan 500 miles through traffic will either work in its
entirety and have the desired effect, or it will abort in the middle of
it and control will be immediately transferred to the relevant catch
block below it. The flow continues in that catch block, in this
case printing the message of the Exception and then terminating
the program.

What to do in each exceptional situation depends on the situation
itself. Sometimes, there are meaningful things one can do in re-
sponse to an error: like if a network connection fails, the code can
retry connecting; or if a checking account withdrawal fails, the sys-
tem can cut over to the savings account and cover the amount from
those funds instead. In our case, if our program tracked things like
routes and desired destinations, a caught exception would indicate
that we need to find a new, temporary destination other than the
one we’re currently seeking: one that has gas so we can fill up.

84 CHAPTER 5. EXCEPTIONS

Once all the method calls that are defined as “throws Exception”
have been enclosed in try/catch blocks that at least nominally han-
dle the errors, the code compiles again and it can hopefully run
error-free.

5.4 Different kinds of exceptions

By the way, throughout this chapter I’ve been referring to “vanilla”
exceptions. By that, I mean we’ve literally used the plain word
“Exception” in all the code samples. Sometimes you’ll see code in
the real world that refers to specific kinds of exceptions. Things
like:

• FileNotFoundException
• DivideByZeroException
• ArrayIndexOutOfBoundsException
• IOException
• NullPointerException
• ...

You can probably tell from the names that these entities represent
certain specific kinds of error conditions: a misspelled filename,
division by zero, falling off the end of an array, etc. Besides read-
ability, one reason these are useful is that Java allows you to catch
different kinds of errors in different catch blocks, so you can handle
them differently. Figure 5.1 gives you the idea.

Important: only one catch block (at most) will get executed when
this code runs. Depending on what specifically went wrong, it could
trigger the code in the first, second, third, or fourth. (Or, if the
.drive() was successful, none of them will be triggered, obviously.)
This is convenient because your error-handling code can be orga-
nized.

Notice that the last of the four catch blocks in Figure 5.1 is for
a “vanilla” exception. This is like a default catch-all (no pun in-
tended): it will be triggered only if none of the specific three
previously-mentioned errors occurred.

5.5. STACK TRACES 85

public static void main(String args[]) {
...
minivan.fillUp();
try {

minivan.drive(500);
} catch (OutOfGasException e1) {

...find nearest gas station...
} catch (FlatTireException e2) {

...stop car and get out the jack...
} catch (EarthquakeSwallowedTheCarException e3) {

...pray...
} catch (Exception e4) {

...print an error and stop program...
}
...

}

Figure 5.1: Multiple catch blocks, to handle different kinds of errors.

The way to throw a special type of exception is the same as throwing
a vanilla one; you just “throw new OutOfGasException()” instead
of “throw new Exception()”. To actually create your own special
kind of exception, we’ll need the material from chapters 11-12, so
stay tuned.

5.5 Stack traces

One more thing before we leave this chapter on exceptions. It of-
ten proves useful to look at an Exception’s stack trace, which is
accomplished by calling .printStackTrace() on the Exception,
often in the catch block. For instance, suppose we change the
original try/catch block (p. 83) to this:

try {
minivan.drive(500);

} catch (Exception e) {
e.printStackTrace(); <--- NOTICE THIS LINE
System.exit(1);

}

86 CHAPTER 5. EXCEPTIONS

Now, what happens if there isn’t enough gas in the old minivan to
drive 500 miles? Here’s what:

java.lang.Exception: Not enough gas!!
at Car.drive(Car.java:37)
at Car.main(Car.java:57)

At first, this output is an eyeful, and causes some students to look
away in horror. But I’m going to encourage you to be brave and
look again, and realize how much useful information is here. This
output is called the exception’s stack trace, by which we mean a
readout of what the stack looked like at the moment the exception
was thrown.

Just as we saw in Chapter 4, Java maintains a stack of frames, one
for each method that’s in progress. Whenever a method returns,
the top stack frame gets popped off the top; whenever a method
is called, a new stack frame gets pushed on the top. At any point
in time, the state of the running program is nicely captured by its
stack.

One of the most helpful debugging tools you could imagine would be
a precise readout of the exact line of every function the program is
currently “in” at the instant the error occurred. And this is exactly
what the stack trace is. The above output tells us:

1. The exception was thrown on line 37 of Car.java. This was
in the .drive() method, which was called from...

2. ...line 57 of Car.java. This was in the main() method.

In this case, there were only two active methods when the excep-
tion was encountered. Other cases are of course more complicated.
Suppose your stack trace looked like this:

BattleException: Power not charged.
at Hyperbeam.useAgainst(Hyperbeam.java:24)
at Snorlax.attack(Snorlax.java:43)
at Pokemon.takeTurn(Pokemon.java:181)
at Simulator.battle(Simulator.java:215)
at Simulator.main(Simulator.java:33)

5.5. STACK TRACES 87

Without even knowing anything about how this program works,
you can tell a ton about the circumstances in which it crashed.
Specifically:

1. An exception was thrown on line 24 of Hyperbeam.java. This
was in the .useAgainst() method, which was called from...

2. ...line 43 of Snorlax.java. This was in the .attack()method,
which was called from...

3. ...line 181 of Pokemon.java. This was in the .takeTurn()
method, which was called from...

4. ...line 215 of Simulator.java. This was in the .battle()
method, which was called from...

5. ...line 33 of Simulator.java. This was in the main()method.

This is usually your first line of defense when debugging: read the
stack trace of the Exception, reconstruct exactly what was going
on when the error occurred, and then set about figuring out why it
was caused.

By the way, you can also print a stack trace from any place in your
code, even if no error condition has arisen or exception is thrown.
If you just type:

...
new Exception().printStackTrace();
...

anywhere you please, then whenever that line of code is encoun-
tered, a stack trace like those above will be spewed to your screen.
It’s often quite helpful when you’re scratching your head saying,
“okay, I know something’s going wrong in this method... ...but how
did I even get here?” The stack trace tells you exactly how.

Oh, I should also mention that these stack trace outputs are a Java
thing. C++’s equivalent output for many of these kinds of error
cases is simply this:

Segmentation fault (core dumped)

I think you’ll agree, that’s not nearly as helpful. ,

Chapter 6

UML class diagrams

We spent last chapter discussing the dynamic view of a program:
what happens to memory, step by step, as it unfolds. In this chap-
ter, we’ll switch to a static view: long-term, what are the program’s
classes, methods, and relationships between them?1

If there’s a type of UML diagram that deserves the name “blueprint,”
it’s the class diagram. Class diagrams depict a high-level, stable
perspective of a software system. When you want to figure out how
a large OO program works, or when you’re tasked with implement-
ing a system that someone else has designed, the first thing you
look at are its class diagram(s).

UML class diagrams contain a number of elements, each of which
has a very specific meaning. We’ll cover each in turn.

1The words “dynamic” and “static” are ubiquitous in computer science, and
mean a zillion different unrelated things. For example, we’ve already seen the
Java “static” keyword, and how it indicates class-level rather than an object-
level ownership. We’ve also hinted at the stack having “statically-allocated
memory” and the heap being “dynamically-allocated.” These terms are unre-
lated to our use of the words in this chapter. At present, by “dynamic” we
mean “the contents of memory changing as the program runs”; and by “static”
we mean “the consistent, permanent characteristics of a program, quite apart
from how it might be behaving at any moment, which include its classes, meth-
ods, and associations.”

89

90 CHAPTER 6. UML CLASS DIAGRAMS

6.1 Classes

Unlike memory diagrams, which depict objects, class diagrams con-
tain classes (duh). We’ve already seen what a single class looks like
in section 3.2 (e.g., the left side of Figure 3.1.) Most class dia-
grams contain many such classes. Recall that each class has three
compartments, containing the class’s name, its inst vars, and its
methods, in that order.

By the way, one flexible (yet slightly annoying IMO) aspect of UML
is that it allows varying levels of detail. In other words, on a par-
ticular diagram, you may or may not want to show all the instance
variables and methods, because it may or may not be relevant to
the purpose of that particular diagram. Similarly, you may or may
not want to show all the aspects of each inst var or method; per-
haps it’s too early in the design process to completely specify all the
parameters and return types, for example. To illustrate, all three
pictures in Figure 6.1 are legit ways of representing the Car class.
We can include as much or as little detail as we please.

Figure 6.1: Three equally valid ways to draw the Car class on a class
diagram, depending on how much detail it makes sense to include.

The reason I find this annoying, by the way, is that it’s ambiguous.
If you see no inst vars in the second box, does that mean (a) that
class has no inst vars, or (b) the designer didn’t think it was relevant
to include them on this particular diagram? No way to really know.

6.2. ASSOCIATIONS 91

6.2 Associations

Perhaps the most important bits of information on a class diagram
are the associations between classes. An association means that
two classes collaborate together in some way to achieve some larger
purpose. It is indicated on a class diagram by a line connecting
the two classes. Different types of lines represent different kinds of
relationships between the classes. It’s important not to mix them
up, because if you do, you’re dictating something incorrect to the
programming team about how the classes are intended to work.

Figure 6.2: Diagrammatic elements for different association types.

Dependency associations

Figure 6.2 shows some of the UML association arrows and their
meaning. (There are others we’ll get to in future chapters.) The
dashed line with a crow’s foot arrowhead is called a dependency,
and is the “weakest” of the association types. When I say weak, I
mean that the relationship between the two classes isn’t as impor-
tant, nor as permanent, as with the other association types we’ll
discuss later.

A dependency between classes A and B can be thought of in a couple
of ways:

• One or more methods of the A class will call methods on a B
object.

• The A class is dependent on the interface of the B class.

92 CHAPTER 6. UML CLASS DIAGRAMS

The word interface – like stack, heap, dynamic, static, and many
other computer science words – has multiple meanings. We’ve seen
one usage already, in Figure 2.4 (p. 30). We’ll talk about the Java
interface keyword later in the book. For now, when I say interface
I mean those aspects of a class that a user of that type of object can
see. This boils down to: the methods you can call on it, together
with their argument lists and return types. Specifically, the inter-
face does not include the method implementations (the bodies of
the methods), nor the instance variables.

If you think about it, you’ll realize why the above two bullet points
are actually equivalent. Suppose some class A method has this line
of code in it: “String s = B.scissorKick(15)”. Then clearly the
code in the A.java file is dependent on the fact that class B has a
.scissorKick() method, and that it takes an integer, and returns
a String. If any of that ever changed in the B.java file, then class
A would be impacted.

Figure 6.3: Examples of dependency associations.

The strange-looking words adjacent to the dependency arrows in
Figure 6.2 go by the even stranger-sounding term stereotypes. A
stereotype in UML is an extra bit of information that enhances
part of a diagram (an association arrow, as here, or sometimes a
class, method, or other element) by making its meaning more pre-
cise. Stereotypes are usually displayed enclosed by double-wakkas
(“≪...≫”).

In the case of dependency associations, the stereotype “≪uses≫”
means pretty much what a dependency always means: that the
designer intends class A to “use” (i.e., get its hands on, and call
method(s) on) object(s) of class B. The “≪instantiates≫” stereo-
type goes a bit further, and implies that some method of A will

6.2. ASSOCIATIONS 93

instantiate B objects in addition to merely calling methods on them.

The examples in Figure 6.3 are from a Dungeons & Dragons type
combat simulator. A Battle object represents a fight between ad-
venturers and monsters. While simulating this fight, a Battle will
make use of one or more Die (singular of “dice”) objects to roll
random numbers that determine the outcome. This is a “≪uses≫”
association, since Battle’s code now depends on Die’s interface not
changing.

Elsewhere in the program, wizards sometimes cast ranged spells,
like fireballs or lightning bolts, to damage distant enemies. So in
the simulator, a Wizard object might instantiate a RangedSpell
object to carry out this attack. Since somewhere in the Wizard
class’s code there will be a “new RangedSpell()” line, we say that
Wizard ≪instantiates≫ RangedSpell.

Dependencies in code

Now what would we expect to see in the code that would reflect this
kind of association? In the “≪uses≫” case, we expect to see one
or more methods of the A class making method calls on B objects.
Perhaps something like this:

class Battle {
...
void resolveAttack(Adventurer a, Monster m, Die d) {

...
if (d.roll() < a.currentWeapon().attackStat()) {

...
}

}
...

}

The design diagram doesn’t specify exactly what A method will be
called where, just that method calls are expected. This communi-
cates something important to the programmer.

For “≪instantiates≫”, we’d expect to see the word new somewhere
in A:

94 CHAPTER 6. UML CLASS DIAGRAMS

class Wizard {
...
void takeAction(ArrayList<Monster> enemies) {

...
if (enemies.size() > 3) {

RangedSpell fireball = new RangedSpell("Fireball", 60, 12);
fireball.cast();
...

}
}
...

}

“Has-a” associations

The next strongest type of association has a bizarre name: it’s
called “has-a.” We denote it with a solid arrow between classes,
with a crow’s foot on one side or both.

When class A has-a class B, that is nearly always a signal to the
programmer that A should have an instance variable of type B.2 In
other words, not only does an A object call methods on a B (as in
the dependency association), but an A object actually holds on to
one (or more) B objects for the long-haul.

Now in some cases, the “has-a” verbiage makes perfect sense. If our
Domino’s Pizza delivery manager application had a Pizza class and
a Topping class, it would be no-brainer to say that every Pizza has-
a Topping. It conjures up in our minds a picture of containment, or
ownership. Perfect. However, we also use this type of association
in cases where containment doesn’t make sense at all.

For example, in the same application it would be quite sensible
to say that “every Pizza has-a DeliveryCar.” But obviously the
delivery car isn’t “inside” the pizza in the same physical way that
the toppings are inside it. So what does it mean then?

The key is making sure you have the right mental model. Fig-
ure 6.4 shows both the wrong, and the right, way to envision a
has-a relationship (at least, in Java). In memory, there is no “con-

2Or perhaps a collection of B objects rather than a single B object, as we’ll
see later in the chapter.

6.2. ASSOCIATIONS 95

Figure 6.4: The wrong, and right, way to visualize a “has-a” association in
Java.

tainment” as in the left-hand (wrong) image. The Topping object
isn’t enclosed inside the Pizza, or even exclusively owned by it. It’s
simply pointed to by one of the Pizza object’s inst vars. The right-
hand side of the figure is the correct one – and I daresay it’s not
problematic at all to think of a Pizza “having” a DeliveryCar in
this way. All it really means is that a Pizza object “knows about”
a DeliveryCar, which is the particular car that’s delivering it.

Another reason that the correct mental model of “has-a” is impor-
tant is that it is possible, and even common, for the association to
go both ways. We use the term navigability for the question “which
direction does the arrow go – from A to B, from B to A, or both?”
When it goes both ways, we call it a bidirectional association.

Figure 6.5: A bidirectional “has-a,” depicted on a class diagram (left) and
a memory diagram.

An example is the left-hand side of Figure 6.5. Here, our Driver
class and our DeliveryCar class each know about the other, and
in fact each hold on to an instance variable of the other type. If
we viewed this A-having-an-instance-variable-of-type-B thing as the

96 CHAPTER 6. UML CLASS DIAGRAMS

A object enclosing the B, we’d blow a fuse. A would contain B,
which would contain A, which would contain B, which... That way
madness lies. But notice that nothing paradoxical happens at all
in the corresponding memory diagram on the right-hand side of the
figure. Each object points to the other, so that a Driver object
knows which DeliveryCar he/she is driving, and a DeliveryCar
also knows which Driver is driving it. No biggie.

Figure 6.6: One incorrect way to model an instance variable. The “has-
a” arrow already indicates that every Pizza has-a Topping: the extraneous
topping entry in the Pizza class’s second box is redundant and incorrect.

Note, by the way, that the has-a arrow implies the existence of
the inst var all by itself. The class diagram should not contain a
duplicate copy of the inst var in its second compartment. That
would be redundant, and is considered an error (see Figure 6.6).

“Has-a” associations in code

Obviously instance variables are how “has-a” associations are man-
ifested in a Java program. For Pizza and Topping, we’d see:

class Pizza {
...
Topping topping;
...

}

and for our bidirectional Driver/DeliveryCar, we’d see both

6.2. ASSOCIATIONS 97

class Driver {
...
DeliveryCar car;
...

}

and

class DeliveryCar {
...
Driver currentDriver;
...

}

These examples both assume that a Pizza has only one Topping,
etc. If this isn’t so, we’d use some kind of container class instead:

class Pizza {
...
ArrayList toppings;
...

}

More on that later.

Aggregation associations

Continuing on towards the “stronger” end of the association contin-
uum, an aggregation implies exclusive ownership of the object(s)
in question. In other words, if A aggregates B, not only does it mean
that A has an instance variable of type B, but that no other A object
also has that B.

This is frequently misinterpreted, so let me expand on that. The
“exclusivity” thing is a statement about objects, not classes. If A
aggregates B, that does not mean that no other class can have an
instance variable of type B. Rather, it means that if a particular B
object is pointed to by an A object, no other A object also points
to that B.

98 CHAPTER 6. UML CLASS DIAGRAMS

Figure 6.7: Examples of aggregation associations.

Examples appear in Figure 6.7. Note carefully: the diamond ap-
pears on the “aggregator” side of the arrow; i.e., adjacent to the
class that will have the instance variable. (I remember getting this
backwards at first.)

In the first example, for a Banner-like college enrollment manage-
ment system, each Professor will teach some number of Sections
in a given semester. If Professor Jones is assigned to teach section
03 of BIOL 121, then no other professor is also assigned to that
section. That’s what the white diamond communicates.

In the second example, from a Facebook-like social networking site,
users can arrange their Photos into Albums. As indicated on this
diagram, a given Photo is not intended to simultaneously belong to
more than one Album. (If we wanted to relax that constraint, and
permit photos to belong to multiple albums at once, we would get
rid of our white diamond and use a plain-old “has-a” arrow instead.)

Aggregations in code

Aggregation is intended to imply some sort of collection or owner-
ship relationship between the two classes. However, in terms of the
Java code that you initially write, there is no immediate difference
between an aggregation and a regular “has-a.” In both cases, you’ll
make an inst var of the appropriate type in the appropriate place.
The code difference between aggregation and has-a won’t come out
until later, when the class methods are being implemented. That
white diamond is more of a long-term signal to the programmer

6.2. ASSOCIATIONS 99

about how two classes are generally intended to operate together,
rather than being a cue to write the first bit of code differently than
you otherwise would.

Composition associations

The last association type we’ll cover, and the most tightly-binding
between classes, is called composition. It’s a lot like aggrega-
tion (even the diamond syntax is the same, except it’s black) but
with one difference. With composition, not only does an A object
have exclusive ownership over its B object(s), but there’s a lifespan
dependency as well: if the A ever disappears, its constituent B’s
should also cease to exist.

Figure 6.8: Examples of composition associations.

Consider the examples in Figure 6.8. In this social networking site,
every User has a Profile. That User is the only one with that
particular profile (hence this is at least aggregation) and what’s
more, the Profile has no meaningful existence without its User. If
the user ever deletes their account, it wouldn’t make sense to have
a disembodied Profile object lying around, so it should automat-
ically disappear as well. This lifespan connection is really the only
difference between the white diamond and the black.

On the right-hand side is an example from some kind of email reader
application (like Outlook, gmail, or Thunderbird). A user can com-
pose an Email with some text and a list of recipients, and then
add Attachments to it to send images, documents, code, etc. But
what if the user decides to abandon the message before sending it?

100 CHAPTER 6. UML CLASS DIAGRAMS

The Email object should go away, but its Attachments should too.
Hence this is another example of composition.

Compositions in code

Just as with aggregations, there’s no simple Java keyword that mag-
ically maps to the idea of “composition.” Instead, the presence of
the black diamond suggests to the programmer the intended func-
tion of the classes involved, and she will write the code with this in
mind.

Association annotations

As if all this weren’t enough, there are also a couple more syntactic
things to learn about UML associations. An annotation is another
mark on part of a diagram that gives more detail about how it is to
be understood or implemented. We’ve already seen two examples
of this: the stereotypes we included next to dependency lines are a
type of annotation, as are the arrowheads to indicate navigability.
We’ll learn two more in this section.

Multiplicity

The multiplicity of an association indicates how many objects are
involved in each concrete relationship. It’s important to realize that
even though multiplicity is shown on a class diagram, it’s really a
statement about objects.

Let’s start with the left-most example in Figure 6.9. There we have
two classes from a DMV software system, connected with a “has-
a” association between Driver and License, navigable both ways.
Note the numeral “1” annotation both sides of the arrow. This
indicates that every Driver “goes with” just one License object,
and every License also goes with just one Driver. This is called a
one-to-one association, sensibly enough.

In the center example, on the other hand, we have a “⋆” on the
side of the arrow that connects to Weapon. In UML, the symbol
“⋆” means zero or more. So here’s how we interpret this one-to-
many association: every Adventurer has zero or more weapons,

6.2. ASSOCIATIONS 101

Figure 6.9: Association annotations indicating multiplicity.

while every Weapon is possessed by just one Adventurer. Note that
since the direction is only navigable in one direction, this indicates
that although an Adventurer is aware of which Weapons she owns,
the Weapon objects are not aware of which Adventurer owns them.
This knowledge (or lack thereof) is perfectly okay, and does not
invalidate the meaning of the 1 or the ⋆ in the slightest.

Finally, on the right side, we have a many-to-many association
between Transcript and Course. This says that every Transcript
object is associated with potentially multiple Course objects, while
each Course object appears on more than one Transcript. In terms
of navigability, Transcripts maintain a record of which Courses
they contain, but Course objects don’t know which Transcripts
they appear on (if any).

You’ll occasionally see more elaborate multiplicity notations on
class diagrams. The notation “0..⋆” means “zero or more”...which
is of course exactly what plain old “⋆” means. The only reason for
a designer to write “0..⋆” is for emphasis: she is stressing to the
coding team that an object of the first type may well have zero ob-
jects of the second type at any given time; this is a real possibility.
In contrast, if she writes “1..⋆” that means “one or more,” which
signals the coder “by the way, every object of the first type should
always be assigned to at least one object of the second type; you
should keep that in mind as you code.” Even more rarely, you’ll
see multiplicities like “5” (“each object of type A is associated with
exactly five objects of type B”), or “3..8” (“each object of type A is
associated with anywhere from three to eight objects of type B”),

102 CHAPTER 6. UML CLASS DIAGRAMS

etc. These are uncommon, especially since as we’ll see in the next
section, there really isn’t any way to code those constraints explic-
itly in a language like Java.

Multiplicity in code

So what does all this look like in code? Well, first remember that
inst vars are only used in the direction(s) along which the associ-
ation is navigable. For Figure 6.9, this means that only Driver,
License, Adventurer, and Transcript will have inst vars related
to these associations; Weapon and Course will not. Furthermore, if
the multiplicity is a 1, the inst var will be of the type the arrow is
pointing to; if it’s a ⋆, it will be some collection of that type. Which
sort of collection is used – an array, an ArrayList, a Hashtable3, a
Set, etc. – is normally up to the programmer, and is decided based
on the run-time performance features of that collection type.

So here’s some code we might reasonably expect to see from our
three examples:

class Driver { class Adventurer {
String name; String name;
License license; int hitPoints;
... ArrayList<Weapon> weapons;

} ...
}

class License {
String number; class Transcript {
Driver owner; Course[] courses;
... ...

} }

Here the programmer of the Adventurer class has chosen to use an
ArrayList to hold each adventurer’s weapons, while the Transcript
author decided on a simple array. In terms of being faithful to the
design, neither choice is right or wrong.

3See section 8.5 (p. 131) if you’re unfamiliar with the Hashtable data type.

6.2. ASSOCIATIONS 103

Roles

Our last type of association annotation has to do with roles. Some-
times, a design will be specific not only about the existence of the as-
sociation between two classes, and about which-knows-about-which,
and about how-many-are-involved, but also the intended meaning
of the relationship. In other words, it may specify what role each of
the object types is expected to play with respect to the other. This
may sound a bit abstract, but some examples will make it clearer.

Figure 6.10: Association annotations indicating roles.

The upper-left example in Figure 6.10 shows a piece of a Mar-
vel comic book database application. We have Hero and Villain
classes, and a one-to-one association between them...but what does
the association mean? If Hero X “goes with” Villain Y, does that
mean that X has recently beaten up Y? That X admires Y? That X
secretly is Y, unbeknownst to the public?

The word “archnemesis” next to the Villain-side of the arrow spells
it out. It’s called a role name. It tells us that in this relationship,
the role that the Villain plays with respect to the Hero is that the
former is the archenemy of the latter.

Moving to the right side of the diagram, we have an interesting situ-
ation involving only one class: TwitterUser. This class apparently

104 CHAPTER 6. UML CLASS DIAGRAMS

has an association to itself! This turns out not to be as weird as it
might seem. In fact, if you think about a social network like Twitter,
the most meaningful relationships are between objects of the same
class. And that’s the key to de-weirding it in your mind: remember
that an association is a statement about objects, not classes. We’re
not saying “TwitterUser has a relationship with itself” but rather
“each TwitterUser is related to zero or more other TwitterUsers.”

And what do those relations mean, you ask? The role name tells
us: one of the users “follows” the other in the Twitter sense. In this
diagram, we have role names on both sides of the arrow, although
that’s probably not strictly necessary. What is interesting here
is the navigability of the association: according to the design, a
TwitterUser object is aware of what other TwitterUsers follow
him/her, but not which TwitterUsers he/she follows. If the design
team decided they needed to track that separately, they’d need
another arrowhead on the top side of the line.

Finally, the bottom example illustrates two different associations
between the same two classes. This can happen as well. In this
case, there are two distinct roles that Professors play with respect
to Students: as their instructors (each student has several) and as
their advisor (each student has one). The role names are imperative
here, since otherwise the programming team would be lost as to why
there are two relationships and what each one is supposed to mean.

Roles in code

Often, the role name on the diagram is simply used as the instance
variable name in the code. For instance, I’d expect to see something
like this:

class Student {
String major;
Professor advisor;
ArrayList<Professor> instructors;

}

6.3. VISIBILITY 105

since those names were handed to us on a silver platter in the design
diagram.

6.3 Visibility

The other parts of UML class diagrams that we’ll annotate with
extra information will indicate the level of visibility that the de-
signer intends the various inst vars, methods, and even classes to
possess. Visibility has to do with promoting encapsulation, the
most important of all OO principles as we learned in Chapter 2.

This is one area where our UML diagrams, ostensibly programming-
language-neutral, will betray a very Java-ish flavor. That’s because
in Java, there are four specific visibility levels for methods and inst
vars (two for classes), each with a precise meaning, and we’ll have
UML syntax to indicate each. The complete list can be found in
the tables in Figures 6.11 and 6.12. In both tables, the visibility
levels are listed in order from most restrictive to least restrictive.

Java packages

Now’s as good a time as any to mention the notion of Java “pack-
ages.” This was a language innovation intended to provide an or-
ganizational mechanism: related classes can be grouped together
into a construct called a package. This really isn’t much more
than being able to store .java files in different directories to keep
them organized, except for one thing: the language itself is aware of
which Java classes are members of which packages, and can enforce
visibility based on that notion, as we’ll see below. For now, here’s
the basics about packages:

1. Package names can be a single word (like “combat”) or a
dot-separated sequence of words (like “com.gearbox.halo.
simulator.combat”).

2. The dot-separated-sequence variety is kinda sorta meant to
convey a hierarchy, from general to specific. In the previous
example – from the Halo videogame created by Gearbox Soft-
ware – “combat” is a subset of “simulator,” which is part of
the “halo” program designed at “gearbox.com”. (Since “com”

106 CHAPTER 6. UML CLASS DIAGRAMS

is more general than “gearbox” – just like “edu” is more gen-
eral than “umw” – many package names begin with a domain
name written in reverse order like this.)

3. However, even though it looks like a hierarchy, Java has no
notion of subpackages. In other words, although the “com.
gearbox.halo.simulator” package looks like it would be a
“subpackage” of “com.gearbox.halo,” in actual fact it is not.
It’s just a naming convention, and there’s no way (for exam-
ple) to “import everything from com.gearbox.halo on down.”

4. Every class is in one (and only one) package. This must be
specified in both of two ways: (1) the first (non-comment) line
of the file must be a package declaration like “package com.
gearbox.halo.simulator.combat”, and (2) the .java file it-
self must be physically in a directory called “com/gearbox/
halo/simulator/combat.”4

5. If a class has no package statement, then it is considered to
be in “the default package,” which just means “the package
with no name.”

Visibility levels

Okay, back to visibility. Let’s look at the syntax and the opera-
tional implications of the different visibility levels in Figures 6.11
(for methods and inst vars) and 6.12 (for classes themselves).

visibility level Java keyword UML visible to...

private private – the class itself
package (none) ~ any class from same package
protected protected # the same package, or subclass5

public public + any method anywhere

Figure 6.11: The four Java visibility levels for methods and inst vars.

4If you forget either one of these two things, or make them incompatible
with each other, your code will be officially unreachable by any Java program.
(Yes, that was a dumb design decision on Java’s part.)

5A “subclass” has to do with the topic of inheritance in OO, which we
will cover in gory detail in Chapters 11 and 12. For now, I just want to make
the table complete.

6.3. VISIBILITY 107

visibility level Java keyword UML visible to...

non-public (none) (none) only classes in same package
public public + any class anywhere

Figure 6.12: The two Java visibility levels for classes.

Now it’s important to understand that unlike multiplicity, visibility
modifiers make a statement about classes, not objects. Also, cru-
cially, visibility is about the very existence of the method, inst var,
or class, not its value. This is very commonly misconstrued, so let
me clarify with an example.

Suppose a class diagram included the class in Figure 6.13. Here, for
the first time, we see visibility modifiers in action. In particular,
the numHits and numAtBats inst vars are both marked as private,
while the isBetterThan() method is public.

Figure 6.13: A class whose components bear visibility annotations.

Here’s the kind of client code we want to make possible with this
method:

...
Ballplayer jeter = new Ballplayer("Jeter");
Ballplayer arod = new Ballplayer("Rodriguez");
if (jeter.isBetterThan(arod)) {

System.out.println("Sign Jeter to a zillion dollars!");
}
...

Let’s inspect the inside of the .isBetterThan() method (i.e., its
implementation). Suppose it reads like this6:

6Apologies to baseball fans for the gross simplification of reducing an entire
player’s “goodness” down to his or her batting average. Of course in real life

108 CHAPTER 6. UML CLASS DIAGRAMS

class Ballplayer {
private int numHits;
private int numAtBats;
...
public boolean isBetterThan(Ballplayer other) {

double myBA = ((double)numHits)/numAtBats;
double otherBA = ((double)other.numHits)/other.numAtBats;
if (myBA > otherBA) {

return true;
} else {

return false;
}

}
...

}

Now the key line I want to draw your attention to is the second line
of the method. It reads:

double otherBA = ((double)other.numHits)/other.numAtBats;

My question to you, dear reader, is this: do you think this line
ought to compile without errors, or no? Take a moment to consider
your answer.

Many, many students assume this line will not compile cleanly.
Here’s their reasoning: “We’re calling .isBetterThan() on a par-
ticular Ballplayer object (say, jeter). And we’re passing another
Ballplayer object as a parameter (say, arod). Now both numHits
and numAtBats are marked private in the class. Therefore, arod’s
values for these should be protected from, and unavailable to, the
jeter object. It stands to reason that this will not be allowed.
Otherwise, we’d be allowing one object to access another object’s
private data.”

there are all kinds of other stats that come into play here – slugging percentage,
base running stats, defensive ability, etc. – as well as impossible-to-quantify
aspects like teamwork, inspiration, and clubhouse chemistry.

6.3. VISIBILITY 109

This sounds so eminently reasonable, and yet it is dead wrong.
Here’s why:

$ A “private” inst var does not mean that one object’s value is
hidden from another object.

" A “private” inst var does mean that the very existence of one
class’s inst var is hidden from other classes.

In other words, it’s not a “data privacy” thing like keeping your
information inaccessible to creepy people online. Instead, it’s a
code encapsulation thing that prevents one class from making (and
thereafter depending upon) assumptions about another class’s de-
sign decisions. In terms of the online creep example, here’s how I’d
explain it:

$ Making SSN (Social Security Number) a private inst var of the
Person class does not mean that one Person object cannot
find out another Person object’s SSN.

" Making SSN a private inst var of the Person class does mean
that Dogs, Websites, CreditCards, etc. don’t even know that
people have Social Security Numbers.

In yet other words, visibility is about variables and classes, not
values and objects.

The code above does compile cleanly for one simple reason: it’s a
method of the Ballplayer class. Any method of the Ballplayer
class can talk about any inst var or method of the Ballplayer class,
regardless of which particular object is in view.

To complete the example, here’s some code which indeed does not
compile because of those private numHits and numAtBats:

110 CHAPTER 6. UML CLASS DIAGRAMS

class Team {
private ArrayList<Ballplayer> roster;
...
public void printRoster() {

System.out.println("Name Hits ABs");
for (Ballplayer b : roster) {

System.out.println(b.name + " " + b.numHits +
" " + b.numAtBats);

}
}
...

}

When we try to compile it, the println() statement inside the for
loop barfs with:

Team.java:25: error: numHits has private access in Ballplayer
System.out.println(b.name + " " + b.numHits +

^
Team.java:26: error: numABs has private access in Ballplayer

" " + b.numABs);
^

as we would expect. It’s because the offending code is a Team
method, not a Ballplayer method, and therefore cannot refer to
any of Ballplayer’s private components (inst vars or methods).

The same mechanic is at play with methods as it is with inst vars:
no code in a class can call a method unless it has visibility to that
method, as specified in the rightmost column of Figure 6.11.

If you’re wondering why it would ever make sense to have a private
method, the answer is: as a helper method, for other (perhaps
public) methods of that class to call internally. Having lots of short
methods to perform basic tasks, but not exposing those methods
outside the class, is one sign of a good designer.

Which visibility level to choose

Both inst vars and methods can technically have any of the four
visibility levels assigned to them from the table in Figure 6.11.
Here are the rules (and strong suggestions) to keep in mind:

6.3. VISIBILITY 111

1. Always make all instance variables private7. That’s the eas-
iest design decision you’ll ever make. Public instance vari-
ables unacceptably sacrifice encapsulation.

2. Always make methods “as private as possible.” This promotes
encapsulation and reduces dependencies. When in doubt, err
on the side of the higher entry in Figure 6.11, not the lower.
If it turns out you must make it more accessible later on,
you can always move its visibility lower on the chart without
breaking anything. The reverse is not true.

Lastly, a word about package-level visibility. There may be design
decisions you make (namely, certain methods you create on a class)
that you don’t necessarily want to make publicly accessible to all
users of the class, yet which it does make sense to make available
to the other classes that are collaborating with that class. Package-
level visibility was designed for this purpose. Note that there is
no Java keyword for it: it’s the default. This is because Gosling
& Co. (the designers of Java) were proud of the package concept
and wanted to promote its use among Java developers as much as
possible. So you have to explicitly type if you want any other choice.
I think package-level visibility is a neat feature, but is underutilized.

Class visibility

As shown in Figure 6.12, the notion of visibility also extends to
entire classes in Java. But it’s simpler: either a class is public, or
it’s not. If it’s public, any class anywhere can refer to it, and if
it’s “non-public” (yep, that’s actually the term) it effectively has
package-level visibility (i.e., only other classes in its package can
use it.)

Non-public classes thus play the same sort of role as private helper
methods do: the public classes use them to help get their job done,
but the non-public ones aren’t designed to be directly instantiated
(or even seen) by the outside world. Their use in practice is some-
what rarer than private methods, but I encourage their use.

7Or possibly protected, if you intend to inherit from the class. See Chap-
ter 12.

112 CHAPTER 6. UML CLASS DIAGRAMS

6.4 Putting it all together

All right, let’s close this chapter with a small but still full-blown
class diagram that illustrates most of the above features. See if you
can interpret all of Figure 6.14 correctly.

Figure 6.14: A full-blown class diagram. (The color is not part of UML; I
only colored certain elements so I could refer to them in the text.)

Here’s an incomplete list of things we know from the diagram. Each
item’s color corresponds to an item in Figure 6.14:

1. The Ballplayer class is public, and thus can be used by any
class in any other package. The Simulator class isn’t, though,
and can only be referenced by classes in the same package.

2. Although anyone can use a Team object, only classes in this
package can instantiate one. (And to do so, you must specify
a city and a mascot.)

3. Any method that gets its hands on a Ballplayer can find out
his/her age. But only methods of the Ballplayer class itself
can change his/her age.

6.4. PUTTING IT ALL TOGETHER 113

4. Every Team object will have a private instance variable8 called
roster which holds a collection (perhaps an ArrayList) of
Ballplayer objects. Each of those Ballplayers belongs to
only a single Team object, but is not aware of which Team
object that is (i.e., Ballplayer objects don’t have an inst
var of type Team).

5. There is a single integer variable numTeams which is shared
among all objects of type Team. It is not visible to any other
class.

6. Somewhere in the static main() method of the Simulator
class we would expect to find code like this: “new Ballplayer(
someName, someAge)”.

7. A Simulator holds on to some number of Team objects, prob-
ably in an instance variable, and each of those Teams belong
only to it.

Did you pick all those things out? If so, you can read a blueprint,
and I foresee many beautiful buildings in your future!

8Notice that the “–” immediately before the word “roster” is a visibility
modifier, indicating that the inst var that results from this association will be
private.

Chapter 7

The Singleton pattern

“Singleton” always sounded to me like the name of some small Amer-
ican town, maybe one where nobody ever gets married. But it’s
actually the name of our first (and easiest) design pattern, and the
subject of this chapter.

7.1 Design pattern

You know how when you sit down to write some code, there are
times when you think, “wait, I’ve written this before”? Program-
mer’s déjà vu is commonplace, especially because certain tips and
tricks end up working in a lot of different settings. For example,
we’ve all seen how to go through an array and add up all its el-
ements, or find its maximum value, or check whether it contains
a particular item. You might think of these as “programming pat-
terns.” They’re bite-sized, go-to solutions that can handle a myriad
of common little programming scenarios.

It turns out that the same is true of design. Certain motifs in
how classes collaborate with each other crop up again and again
in different settings. They’re important enough that they’ve been
identified, described, and named.

The people who first promoted the idea of design patterns were
Erich Gamma, John Vlissides, Ralph Johnson, and Richard Helm,
who were thereafter nicknamed “The Gang of Four.” (You’ll hear

115

116 CHAPTER 7. THE SINGLETON PATTERN

many references in the software development industry to a “Gang of
Four design pattern,” sometimes abbreviated “GoF design pattern.”
This means one of the 21 named patterns that appeared in their
hugely influential 1994 book Design Patterns: Elements of Reusable
Object-Oriented Software. It’s a book highly worth obtaining and
reading.)

One thing that’s great about this is that just by mentioning one of
these agreed-upon pattern names – like “Observer,” “Iterator,” or
“Strategy” – every developer worth their salt will instantly conjure
up in their mind the mechanics of that particular pattern, and know
immediately what kind of problem it’s intended to solve. It saves
a lot of words trying to describe an idea you know your fellow
developer has seen before, if only you could get them to realize
what you’re talking about.

In this brief chapter, we’ll cover the simplest GoF pattern of all:
the Singleton pattern.

7.2 The Singleton pattern

The Singleton pattern is so simple it almost doesn’t even deserve
to be called a pattern. But it is. And it’s easy to figure out when it
applies to your situation: a Singleton is used when you have
a class for which you only ever want to instantiate one
object.

If you think about it, this kind of situation is pretty rare. Clearly
any relevant program is going to need to instantiate lots of different
Car objects, or Ballplayers, or Professors. There are occasions,
though, when your class isn’t so much a category as it is a special,
one-of-a-kind object. Here are some examples:

• Part of your operating system may have a PrinterManager
class that controls sending documents to various printers. The
code will create many Printer objects, and many Documents,
but only one PrinterManager which runs traffic control and
routes print jobs to available printers.

7.3. IMPLEMENTATION 117

• Your website that collects information about classic rock ’n’
roll albums may have a Database class that represents the
underlying data storage. You might get multiple Connections
to it and instantiate multiple Query objects to search it, but
there’s just one Database as a point of contact.

• Most programs have some way of configuring them, usually by
tweaking the values of various configuration variables. Your
program could have a Configuration class from which the
other software components can fetch the values of the settings
as needed. There needs to be only one Configuration object,
since they will all share access to a common set of settings.

The Singleton pattern does two things: (1) it ensures that only one
instantiation is possible, and (2) it provides a global point of access
to that one object, so that the rest of the code can get to it.

7.3 Implementation

Figure 7.1 (p. 118) shows what a properly-coded Singleton pattern
looks like. It uses the Configuration example from above. Let’s
go through each part carefully.

Let’s go through each part carefully. First, we have a static vari-
able called “theInstance”. Recall that static here means “goes
with the class as a whole, rather than with each individual ob-
ject.” The reason for this is the class itself will be holding on to
its one-and-only instantiated object. This is one of the few places
we’ll be using static stuff in this book, because we need to. If
theInstance were not static, then the only way to get a hold of
theInstance would be to have an instance of Configuration in
the first place...which would defeat the purpose of the pattern.

Note that theInstance is also marked private. This is partially
because of our rule “all inst vars should always be private, period,”
but also because making this variable accessible outside the class
would make the whole pattern collapse. Parts of the code that
needed access to the Configuration singleton instance would try

118 CHAPTER 7. THE SINGLETON PATTERN

class Configuration {
private static Configuration theInstance;

public static synchronized Configuration instance() {
if (theInstance == null) {

theInstance = new Configuration(...);
}
return theInstance;

}

private Configuration(...) {
...

}

// The actual methods of the object. For Configuration, this
// might include something like:
public String getParamSetting(String param) {

...
}

}

Figure 7.1: A properly-coded Singleton pattern.

to grab theInstance and use it, but it might not have even been
set to anything yet!

Next, we have the instance()method. This method is also static,
so that it can be called on the class rather than on an object. And
what does it return? A Configuration object...or perhaps I should
say, the Configuration object since there’s only ever going to be
one.

Unlike theInstance, instance() is public. (Package-level visibility
may also be an appropriate choice, depending on how wide your
intended users of this Singleton are.) This is part of the public
interface of the class, designed to be called by code external to the
class.

The other word on the declaration line – synchronized – is proba-
bly foreign to you. Its purpose is beyond the scope of this chapter.
Very briefly, “synchronized” prevents two different threads of exe-
cution from entering the .instance() method at the same time. A

7.3. IMPLEMENTATION 119

multithreaded program is one that executes more than one flow
of control simultaneously, each with its own stack. It turns out that
if more than one thread was inside this method at the same time,
we might accidentally instantiate two (or more) Configuration
objects. For our single-threaded programs this isn’t an issue, but
it’s good practice to get in the habit of making your Singleton
instance() methods synchronized.

Now let’s dive in to the code for instance(). It’s very simple,
as you’ll see: all it does is say “if this is the first time anyone’s
ever called me, go ahead and instantiate an instance of me, and
remember it (in the theInstance class variable). Then, return the
one-and-only instance of me to the caller, to use to their heart’s
content.”

This is called lazy instantiation: the only thing that will trigger
the one-and-only Configuration object being instantiated is the
first time anybody calls Configuration.instance(). If nobody
ever does call it, then there won’t ever be even one instance of this
class created. But assuming someone does, a new Configuration
object will be instantiated this time only. From that point on, all
the subsequent times Configuration.instance() is called, that
same object will be returned.

Then we have the constructor. It can do anything that any con-
structor can do, which varies widely depending on what kind of
class this is. (For the Configuration example, perhaps it looks
at the filesystem for a .config file, and if it exists, loads it and
remembers all its contents in instance variables.) The important
point to emphasize here is that the constructor must be private).
That’s because if it weren’t private, any old schmo could just write
“new Configuration()” and get a second instance of the class,
which is precisely what we want to avoid. Making the constructor
private means nobody is allowed to instantiate a Configuration
object...except for the Configuration class itself, which we saw in
the instance() method.

120 CHAPTER 7. THE SINGLETON PATTERN

7.4 Using the Singleton

This pattern allows any other part of the code base to do things
like:

String bg = Configuration.instance().getParamSetting("bgColor");

Whenever we call “Configuration.instance()” we will get back a
Configuration object. (Whether we realize it or not, it’s the only
such object that will ever exist.) There’s no need to use use the
word new; we just say “Configuration.instance()” every time we
need it.

Other than this scaffolding, the rest of your Singleton class can do
anything it wants. It will almost certainly have other (non-static)
instance variables, and other methods to carry out its evil deeds.
The “Singleton part” is just the instance() and theInstancemem-
bers, together with the private constructor.

Singleton is often used in conjunction with the Factory pattern, by
the way, which we will look at in a future chapter.

That’s it. Told you it was easy! ,

Chapter 8

Java odds ’n’ ends

Before we continue our study of OOA&D proper, let’s look at a
few Java-specific idiosyncrasies which will be all up in our business
soon enough.

8.1 Garbage collection

No, I didn’t make that term up just to be funny. Garbage collec-
tion is actually the official name for a Java feature which was super
innovative at the time, but which we now often take for granted.

Consider the code for a Ball class given in Figure 8.1. When we run
it, Java calls main(), which calls play(). At the end of play(),
right before it returns, a memory diagram would look like Fig-
ure 8.2. Take a moment to see if you agree with all the details.

At this moment, we have an active stack frame for the play() func-
tion which contains five variables of various types. And we’re get-
ting ready to return the reference variable basket back to main(),
which means that about a nanosecond from now main() will be
assigning its new myBall variable to point to that orange ball.

Okay, now let’s do it. We return to main(). As soon as we do,
the memory diagram looks like Figure 8.3. Take a close look. That
second diagram is all correct, but something about it may strike
you as a bit weird; namely, there are three objects on the heap with

121

122 CHAPTER 8. JAVA ODDS ’N’ ENDS

class Ball {
private String color;
private int airPressure;

Ball(String color) {
this.color = color;
airPressure = 0;

}

void bounce() {
System.out.println("Boing!!");

}

static Ball play(int numBalls) {
ArrayList equipment = new ArrayList();
Ball b;
int i;
for (i=0; i<numBalls; i++) {

b = new Ball("red");
b.bounce();
equipment.add(b);

}
Ball basket = new Ball("orange");
return basket;

}

public static void main(String args[]) {
int x = 3;
Ball myBall = play(2);
System.out.println("My ball is " + myBall.color + ".");

}
}

Figure 8.1: A class to illustrate the utility of garbage collection.

nothing on the stack referencing them. The myBall variable duti-
fully points to the orange ball that was returned, but the two red
balls, and the ArrayList that contained them, are now disembod-
ied from everything else. And in fact, they are effectively lost to
the program. There’s simply no way to reference them.

If you’re unsure that there’s truly no way, ask yourself this question:
“what line of code could we write to (say) change one of the Ball
object’s color from red to blue?” The answer is: there is no possible
line of code we could write to do that. To even get off the ground
we’d have to start with a name, and there is no name we could
possibly use to get at either of those red Ball objects.

8.1. GARBAGE COLLECTION 123

Figure 8.2: A snapshot of memory, taken just before the play() function
returns back to main().

Figure 8.3: The state of memory right after the return to main(). Notice
there are now three unreachable objects on the heap.

Now with C++, a language that preceded Java by decades, this
would be a bad situation called (I kid you not) a memory leak.
The memory the program used to store those now-unreachable
Balls is now inaccessible to the program, and what’s worse, C++
doesn’t realize that’s the case. So those old objects just sit there,
growing stale, occupying system memory that could be used to store
other things instead. The program never realizes this, and so never

124 CHAPTER 8. JAVA ODDS ’N’ ENDS

reclaims that space. So the actual amount of memory the program
has available to it has effectively shrunk.

In C++, the only remedy for this situation is for the programmer
herself to keep track of which objects no longer have any stack
references to them, and to explicitly delete those objects. This is
a delicate task: fail to delete what is in fact delete-able and you’ll
have a memory leak; eagerly delete what actually does have other
references to it and your program will crash when that memory
is reused by something else writing over the top of it. The whole
situation is fraught with peril.

Enter Java, in 1995. Java featured automatic garbage collec-
tion which outsourced the whole responsibility for this from the
programmer to a special Java background task called the garbage
collector. Whenever the garbage collector runs, it intelligently
sifts through the contents of memory, looking for junk that can’t
be legally accessed anymore anyway. Whenever it finds such junk,
it automatically tells the memory manager that that memory is no
longer in use, and can therefore be repurposed the next time the
program requests some memory with new.

Automatic garbage collection is lit. It means that pictures like
Figure 8.3 aren’t scary at all. Sure, we have three objects in the
heap that can’t ever be reached, but the garbage collector will soon
run, figure that out, and reacquire that memory so it can be used
again. All this without the programmer having to think a thing
about it. Memory leaks are in principle a thing of the past.

As with most good things, there are downsides too. One downside
to Java’s approach is that the garbage collector thread decides to
run “any time it darn well pleases.” As developers, we don’t ever
tell Java to get off its butt and take out the trash (although there
is a way to suggest this); rather, we just wait for it to run when it
periodically thinks it needs to. This isn’t normally a problem, but
it can be in mission-critial real-time applications with absolute per-
formance deadlines. Think of the software running on a pacemaker,
which is embedded in a human heart. The code must respond in
a certain amount of time in order to trigger the heart to take its
next beat! Now if, during our pacemaker program’s operation, the

8.2. THE IMPORT STATEMENT 125

garbage collector suddenly decided to run in order to clean up lost
memory, it might be a time-consuming operation in its own right.
And our program could literally skip a beat (or beat later than it
should) while waiting for it to finish. In situations like these, C++’s
style of manual control does give us more fine-tuned flexibility over
when exactly the reclamation of lost memory occurs. For most ap-
plications, though, we don’t need that flexibility and Java’s way of
handling it is much appreciated.

8.2 The import statement

You’ve probably used import in almost every Java program you’ve
ever written. Yet I’ve found most developers don’t really under-
stand what it does. Java itself is partially to blame here: the word
“import” was a poor choice for this, since nothing is “imported” at
all.1

Here’s a statement that surprises a lot of Java programmers: you
can write any Java program – even one that uses stuff in the Java
API – without an import statement. The left side of Figure 8.4 is
such a program.

No import required. Instead, on the left-hand side of the figure,
every time we want to refer to the ArrayList class, we specified
it as java.util.ArrayList. That does require us to type out the
full name three times, but it turns out to be all Java needs to
understand perfectly which ArrayList class we want to use.

Now since programmers (myself included) are lazy, and want to
avoid typing when possible, the Java gods invented the import
statement. The only thing it does is tell Java “I don’t really feel
like typing out java.util.ArrayList every time. That’s a pain.
So Java, please know that when I type ArrayList in this file, I
really mean java.util.ArrayList.”

The right-side of Figure 8.4 is exactly the same program, but now

1Also, the fact that it begins with a lower-case i just like C++’s “#include”
statement reinforces this misconception – C++’s #include actually does in-
clude/import content.

126 CHAPTER 8. JAVA ODDS ’N’ ENDS

import java.util.ArrayList;

class YouDontNeedImport { class YouDontNeedImport {
public static void main(String args[]) public static void main(String args[])
{ {

java.util.ArrayList celebs = ArrayList celebs =
new java.util.ArrayList(); new ArrayList();

celebs.add("Kim Kardashian"); celebs.add("Kim Kardashian");
celebs.add("Justin Bieber"); celebs.add("Justin Bieber");
celebs.add("Taylor Swift"); celebs.add("Taylor Swift");
p(celebs); p(celebs);

} }

static void p(java.util.ArrayList l) { static void p(ArrayList l) {
for (int i=0; i<l.size(); i++) { for (int i=0; i<l.size(); i++) {

System.out.println("People love " System.out.println("People love "
+ l.get(i)); + l.get(i));

} }
} }

} }

Figure 8.4: The same Java program, using explicit inline package names
(left), and the import statement (right).

using the import statement to avoid a little typing.

Whether the savings are worth it in any particular case is up to you.
My point here is just to demonstrate that the statement “import
java.util.ArrayList” does not do anything remotely like “go and
find the ArrayList code in the java.util package, and bring it in
here so I can use it.” Nor is it true that “unless you import that
class, you can’t use it.” Both are common Java myths.

Don’t import *

By the way, you may have seen the use of “*” syntax, like this:

import java.util.*;
import com.google.search.engines.*;
import edu.umw.stephen.coolclasses.*;

This isn’t a good idea. The reason is that it’s ambiguous. Suppose
in my code I refer to a class called Scanner. Which Scanner do I
mean? Should Java assume I wanted to avoid typing “java.util.
Scanner” or “com.google.search.engines.Scanner” or “edu.umw.
stephen.coolclasses.Scanner”? It has no way of knowing. So if

8.3. JAVA “GENERICS” 127

more than one of those packages defines a class with the same name
(which is very possible), Java will at best not compile, and at worst
give unexpected runtime behavior.

For this reason, using “*” in import statements is only acceptable
when writing quick and dirty one-off code, not for anything that
will stick around longer than your current coding session.

8.3 Java “generics”

Speaking of misleading terms, let me give you another one.

There are two ways to use a container class from java.util (like
ArrayList, Set, or PriorityQueue). One way is to just create one
without any syntactic fuss:

import java.util.ArrayList;
...
ArrayList stuff = new ArrayList();

and then put stuff in it:

stuff.add("Laundry");
stuff.add("Lunchbox");
stuff.add(new Car("Mazda", "MX-5"));

This is called a heterogeneous collection, because the things it
contains are of different types (Strings and Cars, this case).

Java allows this perfectly well, for reasons we’ll understand in detail
later. Here’s the rub, though: when we get something out of the
collection, we have to cast (or typecast, or downcast) it to the
correct type before doing anything specific with it. This code, for
example, does not compile:

// Doesn't work:
System.out.println("First item has " +

stuff.get(0).length() + " letters.");

128 CHAPTER 8. JAVA ODDS ’N’ ENDS

The reason is that we’re calling .length() on whatever object hap-
pens to be at position 0 of the list, and Java can’t know for sure
whether that object will end up being a String, a Car, or some-
thing else. In particular, it can’t know that that object will even
have a .length() method. So Java makes us do this:

// Works, due to explicit cast:
System.out.println("First item has " +

((String) stuff.get(0)).length() + " letters.");

This says, “Java, I give you my word. I promise the thing at position
0 will be a String, and I’ll stake my reputation on it. Please force
it to be treated as a String, and if it turns out I’m lying, you have
permission to embarrass me at runtime with a program crash.”

Having to do that is a rather high price to pay for the flexibility
of being able to store any old thing in stuff. That’s why back
in 2004, Java introduced the idea of generics, which allow you to
restrict a collection to having only items of a single type. Here’s
how you do it:

import java.util.ArrayList;
...
ArrayList<String> stuff = new ArrayList<String>();
stuff.add("Laundry");
stuff.add("Lunchbox");
stuff.add(new Car("Mazda", "MX-5")); // Compile error

Our stuff is no longer a plain old ArrayList, but specifically an
ArrayList<String> (pronounced “array list of strings.”) This tells
Java, “please don’t let me put anything into this ArrayList except
Strings. I’m asking for this restriction because it’s for my own
good.”

When we do this, trying to insert a Car (or anything else) will bomb
at compile time, as it should. And now, we don’t have to typecast
anything we get out of it: since Java knows it would only have put
Strings in, it knows that it will only get Strings out. Therefore,
“stuff.get(0).length()” works just fine, no cast necessary.

8.4. “WRAPPER” CLASSES 129

This is a good feature, and you should pretty much always use it.
My only complaint is that I think the word “generic” is exactly the
wrong word for it. They almost couldn’t have chosen a worse term.
Saying you have “a generic ArrayList” sounds like it ought to mean
the first style (above), where the type wasn’t specifically mentioned
and therefore any object was fair game to put in it. But in actual
fact, “a generic ArrayList” means “a specific, decidedly non-generic
ArrayList that is declared to only hold values of a certain type.”
Go figure.

8.4 “Wrapper” classes

This is a good time to explain the usage of Java’s wrapper classes.
Recall that there are two kinds of Java variables: those that store
primitive types (like int) and those that refer to objects (like Car).
The biggest practical difference between these two, as we’ve seen, is
where they’re stored: primitive types go on the stack (and hence are
pass-by-value) whereas the objects pointed to by reference variables
go on the heap (and hence are pass-by-reference).

Another difference relates to the container classes like ArrayList
that we’ve just been discussing. All those java.util goodies, it
turns out, can store any type of object...but it must be exactly
that: an object. In particular, they can’t store primitive types.

So this means we can’t do this:

import java.util.ArrayList;
...
ArrayList<int> uniformNumbers = new ArrayList<int>(); // NOPE

because there’s no such thing as “an ArrayList of ints.” That
sucks because ints, doubles, and booleans are things we’d like to
make ArrayLists of all the time.

Fortunately, there’s an easy way around this. Each primitive type
has a “wrapper class” in Java: it is the mold for objects so simple
that they don’t do anything except hold a piece of data: an int (or
char, or double, etc.) We could do this, for instance:

130 CHAPTER 8. JAVA ODDS ’N’ ENDS

Integer michaelJordan = new Integer(23);
Integer derekJeter = new Integer(2);
Boolean gameOfThronesRocks = new Boolean(true);

and produce the memory diagram in Figure 8.5. Each object is
nothing more than a shell that “wraps” a primitive piece of data.

Figure 8.5: Wrapper objects live on the heap.

So far this isn’t very exciting. But one reason we need it is so we can
store primitive types in container objects like ArrayListss. Here’s
all we need to do to create our list of uniform numbers:

import java.util.ArrayList;
...
ArrayList<Integer> uniformNumbers = new ArrayList<Integer>();

and it works, since the elements of the ArrayList are declared to be
objects, as required. (Really teensy-tiny objects that don’t really
do anything, but objects nonetheless.)

It’s nice that after this, Java lets us work with primitive variables
rather than the wrapper classes:

uniformNumbers.add(23);
uniformNumbers.add(2);
uniformNumbers.add(20);
int mikeSchmidt = uniformNumbers.get(2);

so we really only notice the wrapper part at instantiation time.
This isn’t the only time we need to use wrappers, but it’s the only
one we need in the immediate future.

8.5. THE HASHTABLE DATA STRUCTURE 131

8.5 The Hashtable data structure

One very, very common container type that we’ll use is java.util.
Hashtable. (If you’ve used a dictionary in Python, this is essen-
tially the same thing.) A Hashtable holds a container of key-value
pairs. Each key-value pair represents a named piece of data – the
key is the name, and the value is the data. So unlike an ArrayList,
where the data elements are numbered, and thus accessed by a nu-
merical index, a Hashtable uses the keys to specify which piece of
data is required.

An example will make this all clear. Suppose we want to keep track
of superheroes and the names of their secret identities, so that if the
government decides to legislate against super powers, we can hunt
down all the potential perpetrators. We’ll do so in a Hashtable
called alterEgos:

import java.util.Hashtable;
...
Hashtable<String,String> alterEgos = new Hashtable<String,String>();
alterEgos.put("Superman","Clark Kent");
alterEgos.put("Batman","Bruce Wayne");
alterEgos.put("Elastigirl","Helen Incredible");

This instantiation syntax may make you bug-eyed. You’ll see that
we include not one but two types inside the “< ... >” markers; in this
case, both are Strings. These two specify the type of the keys, and
the type of the values. Since our keys are text (superhero names)
and our values are also text (the names of the alter egos) it makes
sense to make this a String-to-String hash table.

The .put()method is used to add a new key-value pair to the table.
It is also used to change the value that goes with a particular key.
That works because in a hash table, every key goes with just one
value. If we ran a line of code like this:

alterEgos.put("Batman","Rich Dude");

then the String “Bruce Wayne” would be permanently removed
from memory, and replaced by “Rich Dude”.

132 CHAPTER 8. JAVA ODDS ’N’ ENDS

To retrieve the value that goes with a particular key, we use .get():

String elastigirlTrueIdentity = alterEgos.get("Elastigirl");
System.out.println("Pssst...Superman is really: " +

alterEgos.get("Superman"));

This looks much like the way we obtain items from an ArrayList,
except that with ArrayList.get(), we passed an integer, and for
Hashtable.get(), we pass a key (whatever type that may be).

A very common use of Hashtables is to store objects based on some
kind of name or identifier. For example:

import java.util.Hashtable;
...
Hashtable<Integer,Customer> customers = new Hashtable<Integer,Customer>();
...
customers.put(7533, new Customer("Joe Blow", "New Plymouth, ID"));
customers.put(6717, new Customer("Jill Hill", "New York, NY"));
...
Customer custNum6717 = customers.get(6717);

Here we’re storing Customer objects by their customer ID numbers,
for easy retrieval by that later.

In this book, I’ll draw Hashtable objects as shown in Figure 8.6.
Its contents table is full of references: each box in the left column
points to a key (in this case, an Integer) and the box to its imme-
diate right points to the corresponding value (a Customer). Notice
that there is no well-defined order to the entries in the table – in this
case, even though Joe Blow was the first one inserted, he occupies
the second row of the table. This is to emphasize that when you
add a key-value pair to a Hashtable, it doesn’t remember anything
about when you added it, only that you did add it.

Iterating through Hashtables

One last thing about Hashtables: you can iterate through them as
you can iterate through any other collection (like an ArrayList).
But it’s kind of tricky. Remember that there isn’t any inherent

8.5. THE HASHTABLE DATA STRUCTURE 133

Figure 8.6: A Hashtable of Customer objects, stored by their customer
IDs.

“order” to the key-value pairs, so you can’t say “give me the first
one, then the second, then ..., all the way to the end.”

The way you achieve this is by using an Enumeration object, also
from the java.util package. This is actually an example of the
Iterator design pattern, which we’ll see in a later chapter. For
now, mostly just memorize the approach.

You call .keys() on the Hashtable which returns an Enumeration
of the “key halves” of the key/value pairs. Think of an Enumeration
as just “a way to iterate through a group of things, one by one.” In
this case, the “things” are the Hashtable’s keys. Every time you call
.nextElement() on the Enumeration object, it gives you the next
key and advances the “cursor” to point further on down the line.
When you call .hasMoreElements() on the Enumeration, it tells
you whether or not you can continue further. These two methods
are just what you need to write a while loop to cycle through all
the keys; and each time you get a key, you can use the original
Hashtable to retrieve the corresponding value. To wit:

134 CHAPTER 8. JAVA ODDS ’N’ ENDS

import java.util.Hashtable;
import java.util.Enumeration;
...
Hashtable<String,String> alterEgos = new Hashtable<String,String>();
...
Enumeration<String> superheroNames = alterEgos.keys();
while (superheroNames.hasMoreElements()) {

String superheroName = superheroNames.nextElement();
System.out.println(superheroName + " is really " +

alterEgos.get(superheroName));
}

So the key is retrieved directly from the .nextElement() method,
but to get the value we have to go back to the Hashtable itself and
call .get() with the key.

Also, remember that the order in which you’re given the key-value
pairs here is not necessarily the order in which you inserted them.
That order is irretrievable after the fact – if you need to keep track
of it, you’ll need a separate data structure (perhaps an ArrayList
of the keys, in order of insertion) to remember it.

8.6 Command-line arguments

Every Java program you’ve ever written has this line in it:

public static void main(String args[]) {

Have you ever wondered what that “args” thing is for?

Like all programming languages, Java lets you access the command-
line arguments that the user typed after the program name when
she ran the program. Command-line arguments are nothing new
for a budding Linux user. For instance, this sort of command is
second-nature to you by now:

$ cp Program1.java ~/backup

It consists of a command name (“cp”) plus two command-line ar-
guments, which are: “Program1.java”, and “~/backup.”

8.6. COMMAND-LINE ARGUMENTS 135

Now it turns out that every Linux program is capable of taking
command-line arguments, including Java programs. Suppose I type
this:

$ java Simulator UMW Marymount

As you know, this is a command to run a Java program whose
main() method is in Simulator.java. Apparently, the user is try-
ing to simulate a basketball game between two opponents, and is
using command-line arguments to specify which opponents.

The only question that remains is: how does the Java code get
access to those strings that were typed on the command line when
it was run? The answer is args. When main() is called, Java passes
the command-line arguments to it as an array of Strings. It’s that
simple. Inside main(), you can treat the variable “args” in the
same way as any other array. For instance, if your code says:

class Simulator {
public static void main(String args[]) {

System.out.println("There were " + args.length +
" command-line args.");

}
}

then the output, when run with the command above, will be:

There were 2 command-line args.

And if your code says:

class Simulator {
public static void main(String args[]) {

System.out.println("First arg was: " + args[0] + ".");
System.out.println("Second arg was: " + args[1] + ".");

}
}

then the output, when run with the command above, will be:

136 CHAPTER 8. JAVA ODDS ’N’ ENDS

First arg was: UMW.
Second arg was: Marymount.

This is powerful because it allows users to run your program with
different inputs and options without having to recompile it (or even
have access to a compiler at all).

8.7 Sameness vs. identicality

Our last odd/end has to do with how Java determines whether two
objects are “equal” to each other. It turns out that there are two
different definitions of equality, which must be kept firmly separate
in your mind: sameness and identicality.

Consider the memory diagram in Figure 8.8. Here we have four
named variables: p1, p2, p3, and p4. Now riddle me this, Batman:
at the moment this snapshot was taken, which of these variables do
you consider to be equal to each other?

Figure 8.7: What does “equal” mean?

I think we can agree that p2 does not “equal” any of the others.
That leaves the other three. Are p1 and p3 “equal?” Are p3 and p4
“equal?”

It all depends on what your definition of “equal” is, of course. And
here’s how Java does it: it says that p1 and p3 are the same, while

8.7. SAMENESS VS. IDENTICALITY 137

if (p1 == p3) {
System.out.println("This WILL print.");

}
if (p3 == p4) {

System.out.println("This will NOT print.");
}
if (p1.equals(p3)) {

System.out.println("This WILL print.");
}
if (p3.equals(p4)) {

System.out.println("This WILL probably print (but see below).");
}

Figure 8.8: Testing for sameness vs. identicality.

p3 and p4 are identical. “The same” means that the two reference
variables refer to the very same object in memory. They are liter-
ally pointing to the same memory address, and so they are pointing
to the same “copy” of the object. This is easy to see by imagining
changes to that object – if the left-most Josh Gibson changed uni-
form numbers when he was traded from the Homestead Grays to
the Pittsburgh Crawfords, both p1 and p3 would automatically see
that change. They point to the same object, so they refer to the
same uniform number variable: if it changes, they both change.

But p3 and p4 are not the same – they’re merely identical. They
refer to two different objects which just happen to have the same
internal state. Changing one would not affect the other. At the
moment, they’re duplicate copies, but copies nevertheless.

(By the way, realize that sameness implies identicality. The objects
p1 and p3 refer to the same, and therefore they are also identical.)

Testing for sameness and identicality

Sometimes a programmer cares about one of these conditions, and
sometimes the other. Java has two syntaxes to distinguish between
the two tests.

To test for sameness, use “==”. To test for identicality, use
“.equals()”.

Figure 8.8 gives an example. In the first two lines of that code, we

138 CHAPTER 8. JAVA ODDS ’N’ ENDS

are testing for sameness. So even though the objects referred to
by p3 and p4 are spittin’ images of each other, identical in every
conceivable way, they are nevertheless not “==” to each other. But
they might well be .equals() to each other...if we take the special
step described next.

Overriding .equals()

It turns out that the last print statement of the preceding code
statement will actually not get printed unless we inform Java about
what “identical” actually means for this class. By default, Java will
fall back to just using the sameness test when .equals() is used.
The way to tell it how to test for identicality is to override the
.equals() method for the Ballplayer class. Here’s how:

class Ballplayer {
private String name;
private int uni;
private String pos;

...
public boolean equals(Ballplayer b) {

if (this.name.equals(b.name) &&
this.uni == b.uni &&
this.pos.equals(b.pos)) {
return true;

} else {
return false;

}
}
...

}

We’ve told Java that for Ballplayers, “identical” means objects
that have the same name, uniform number, and position. We could
have done anything else we wanted; for instance:

8.7. SAMENESS VS. IDENTICALITY 139

class Ballplayer {
private String name;
private int uni;
private String pos;

...
public boolean equals(Ballplayer b) {

if (this.name.charAt(0) == b.name.charAt(0)) {
return true;

} else {
return false;

}
}
...

}

Now any two Ballplayers whose name started with the same let-
ter would be considered “identical” – Josh Gibson would be con-
sidered identical to Joe Dimaggio. This is a weird idea, and not
normally encouraged. But sometimes a situation does come up
where it makes sense to say that one object .equals() another
even if only some of their information matches.

Beware comparing Strings! (Use .equals())

Notice how in the very definition of Ballplayer.equals() we called
the .equals() method for Strings. You may have expected it to
say:

public boolean equals(Ballplayer b) {
// WRONG
if (this.name == b.name &&

this.uni == b.uni &&
this.pos == b.pos) {
return true;

} else {
return false;

}
}

instead. After all, that’s less typing, right?

140 CHAPTER 8. JAVA ODDS ’N’ ENDS

But my choice here was deliberate, and when comparing Strings
in particular you must always use .equals() like this. The reason
is esoteric, and has to do with how Java tries to conserve memory
by re-using space for different String objects with identical con-
tents. The upshot of this is that “==” sometimes works the way
you expect, and other times does not. One minute you’ll find that
"Satchell" == "Satchell" and then a moment later you’ll dis-
cover that "Buck" != "Buck". It’ll seem random, and it basically
is. But if you always use .equals() to compare Strings, it’ll always
return true when their contents are exactly the same, and you won’t
have any painful late-night debugging sessions (for that reason, at
least).

Chapter 9

UML sequence diagrams

Class diagrams are the bread-and-butter of UML. They depict the
static features of software systems: the classes, methods, and asso-
ciations that connect them. Complementary to class diagrams are
another type of UML artifact1 called sequence diagrams. They
show the dynamic interrelations between objects as a system’s code
executes.

Each sequence diagram depicts one scenario, or flow through the
system. Unlike a class diagram, which is sort of “always true” and
shows all the permanent and unvarying features of the program
in question, every sequence diagram shows its own path: its own
thread of execution in a particular, hypothetical scenario. After all,
nearly every time you run a program, something different happens,
either because the user makes different choices, network and system
latencies cause various tasks to end at different times, or a random
number generator is involved. A sequence diagram selects just one
possible outcome and highlights it start-to-finish so that an example
of how the classes are intended to interact is unveiled.

I think of a sequence diagram as a “sounding” in the nautical sense.

1By the way, the term artifact in software engineering means “a docu-
ment, diagram, computer program, or some other tangible deliverable that
results from carrying out a development activity.” The measurable progress a
development team makes consists of the various artifacts they produce along
the way.

141

142 CHAPTER 9. UML SEQUENCE DIAGRAMS

In ancient times, ship captains who suspected they were approach-
ing land would test how deep the water was by probing it with a
sounding line. Modern ships do the equivalent with sonar. A sound-
ing is an exploratory investigation down one possible path through
the water’s depths to see what’s below. One sounding doesn’t tell
you everything about the whole region’s topography, but it tells you
a great deal about the specific area you’re in. And if you perform
several soundings, you can combine the clues you obtain from each
one to build a mental picture of a wider section of the ocean floor.
A programmer can do the same by learning from several different
sequence diagrams, each of which tells a different story.

Sequence diagrams are designed to be perused in conjunction with
their corresponding class diagrams. I always tell students: “when
you look at a sequence diagram, only look at it with one eyeball;
keep the other eyeball on the class diagram.” As we’ll see, both
diagrams have to be “in sync” with each other, since information
presented on one must be compatible with what’s on the other.

9.1 Going backwards
Reverse-engineering a sequence diagram from code

Flip back to Figure 6.14 from chapter 6 (p. 112). This is our baseball
simulator example. Keep your finger in this page for reference as
you follow along in this section.

We’re going to begin our “sounding” through this program by start-
ing in the Simulator class’s .printAllStars() method. Its job is
to print out the names of the teams and their all-time greatest
hitters, like this:

NY Yankees - Babe Ruth (3)
St. Louis Cardinals - Stan Musial (6)
NY Giants - Willie Mays (24)
Milwaukee Braves - Hank Aaron (44)
Boston Red Sox - Ted Williams (9)
...

9.1. GOING BACKWARDS 143

The story told by a sequence diagram has to begin somewhere; this
is sometimes, but not always, in main(). Here we pick up the action
in .printAllStars(). Let’s say the code for it looked like this:

class Simulator {
...
public void printAllStars() {

int numTeams = teams.size();
for (int i=0; i<numTeams; i++) {

Team nextTeam = teams.get(i);
System.out.println(nextTeam + " - " +

nextTeam.getBestHitter());
}

}
}

Normally, we start with a UML design and then write the code to
implement it; but here, we’re going to reverse-engineer the UML
sequence diagram from the code. This is because so far you’ve seen
a lot more code than sequence diagrams in your life, and I think
you’ll better understand how sequence diagrams work if I show it
to you this way first. (In the next section we’ll go the other way.)

Sequence diagram features

Now look at the enormous diagram in Figure 9.1. To get your
bearings, note these two important aspects of sequence diagrams:

• The objects (and occasionally classes) that participate in this
scenario appear across the top of the diagram. There is no
inherent meaning to the order in which they appear, but often
objects that are involved earlier in the code path are on the
left side.

• The dashed line that extends down the page from each box
“goes with” that object. Horizontal arrows that originate from
(or point to) that line are methods that object calls (or that
are called on it).

• Time goes down. In other words, as the code path executes
in time, we move progressively further down the page.

144 CHAPTER 9. UML SEQUENCE DIAGRAMS

Figure 9.1: A sequence diagram: Baseball example.

9.1. GOING BACKWARDS 145

What the arrows mean

So we begin by looking at the upper-left corner, where the top-most
arrow goes from the “:Simulator” box to the “teams:ArrayList”
box, and is labeled “size()”. As I’m sure you can guess, this cor-
responds to the line of code: “int numTeams = teams.size();”
which is the first thing we do in .printAllStars().

� Here’s how you interpret any arrow on a sequence diagram:

1. Every horizontal arrow is a method call. (Important: method
calls are the only part of the code that can be shown on a
sequence diagram.)

2. The vertical dashed line where the arrow starts is the object
that makes that call. (In other words, if an arrow starts from
a “:Person” box, then somewhere in a method of the Person
class we can expect to find this method being called.)

3. The vertical dashed line where the arrow ends is the object
on which the method is being called. (In other words, if an
arrow ends on a “:Book” box, then we’re calling the method
on that Book object.)

4. The writing on the arrow is the name of the method being
called, plus any parameters.

So, that first arrow in Figure 9.1 means:

�
“Somewhere in a method of the Simulator class, we’re calling
.size() on an ArrayList object named teams.”

(Before you go on, read that sentence, and stare at that arrow,
several times and make sure you’re absolutely certain of every detail.
This one key idea is the secret to understanding sequence diagrams.)

Notice that the arrow terminates on the top of a skinny box that
extends a centimeter or so down the teams:ArrayList’s vertical
dashed line. This skinny box represents the time during which the
program is “in” the .size() method. It’s not actually intended to
specify a duration of time (as in “the .size() method will take
1.4 milliseconds to complete”) but rather the-fact-that-it’s-being-
executed at all. In a moment, we’ll see that these skinny boxes can

146 CHAPTER 9. UML SEQUENCE DIAGRAMS

be (much) taller if we want our sequence diagram to show detail
about what happens inside that method.

Following the flow

Okay. Let’s continue down the diagram and see the rest of the
action unfolding. Keep your finger on Figure 9.1 as we go so you
don’t lose your place.

1. The dashed vertical line pointing left with a “28” written on
it is the return value. In this particular scenario, apparently
there are 28 teams (i.e., 28 entries in the ArrayList).

2. The next call is to .get() the first entry in the list. Ob-
serve how the line says literally “.get(0)” whereas the code
has “.get(i)”, with i being a loop variable. This is per-
fectly fine. It means that as the code executes, the call to
ArrayList.get() is effectively passed the value 0 as an ar-
gument the first time it’s called, which is of course true. The
fact that a loop is required is implicit. The designer, who cre-
ated this sequence diagram, isn’t spelling out details like “use
a loop here” for the programmer. Instead, she’s illustrating
the intended pattern of method calls between objects – the
programmer will infer the need for loops, local variables, etc.

3. The dashed “return value” line is blank. That’s okay too: it
means the designer didn’t bother to specify a name for it.
(Get used to design diagrams containing differing levels of
information in different places.)

4. Then .toString() is called on the returned Team object.
Why? Because we’re System.out.println()’ing it, and as
you’ll recall from p. 54, the .toString() method is automat-
ically invoked for any object that tries to be “printed.” So
even though our code doesn’t explicitly say “.toString()”
in it, the method is nevertheless called, and is thus dutifully
shown on the sequence diagram.

5. Now pay close attention. Notice that the .toString() ar-
row isn’t followed by a dashed return value arrow right away.

9.1. GOING BACKWARDS 147

Instead, the skinny box extends down the page an inch or
more. This is because we’re showing what’s happening inside
.toString(). In this case, there are two bendy arrows going
from the nextTeam:Team line back to itself. These mean that
the methods .getCity() and .getMascot() are being called
by the Team object on itself. This may disorient you at first,
but of course there’s nothing really strange about an object
calling a method on itself. After all, our Team.toString()
method looks like this:

public class Team {
...
public String toString() {

return this.getCity() + " " + this.getMascot();
}
...
private String getCity() { return this.city; }
private String getMascot() { return this.mascot; }

}

Calling a method on “this” is exactly what’s indicated by
those bendy arrows.

6. Now, finally, we get our dashed arrow back to “:Simulator”,
with a return value of “NY Yankees”. The control flow thus
transfers from .toString() back to .printAllStars().

7. Next up is the .bestHitter() method, called later on in that
same .println() call. This commences an even longer skinny
box, because .bestHitter() has a lot to do. Here it is:

...
private Ballplayer bestHitter() {

int numPlayers = roster.size();
Ballplayer best = roster.get(0);
for (int i=0; i<numPlayers; i++) {

Ballplayer b = roster.get(i);
if (b.getBattingAvg() > best.getBattingAvg()) {

best = b;
}

}
return best;

}
}

148 CHAPTER 9. UML SEQUENCE DIAGRAMS

You can see that after getting the size of the roster (in this
case, only two players since this is a long enough example as
it is!) we get each Ballplayer in turn, ask for his batting
average, and compare it to our “best so far” in a typical find-
the-max-element type of loop.

All of this is faithfully represented in the sequence diagram.
First, the Team object calls .size() (and gets “2” back). Then
it calls .get(0) (and gets back a player; let’s say Babe Ruth),
and then calls .getBattingAvg() on it (getting the number
.342, a jaw-dropping lifetime average, especially for a power
hitter). A moment later, it does the same with the second
player (say, Joe Dimaggio) and gets his average (still amazing,
but “only” .325) for comparison.

8. More detail is shown inside the Ballplayer.getBattingAvg()
calls. That code looks like this:

public class Ballplayer {
...
public double getBattingAvg() {

return ((double) this.getNumHits()) / this.getNumAtBats();
}
private String getNumHits() { return this.numHits; }
private String getNumAtBats() { return this.numABs; }
...

}

and makes two “self-calls” to get this Ballplayer’s two rele-
vant statistics. Those calls are again shown as bendy loops.

9. Finally, the Team returns its best hitter (Babe Ruth in this sce-
nario) back to the Simulator, which again calls .toString()
implicitly, this time on the Ballplayer object. That method
returns the name of the ballplayer and his uniform number,
formatted nicely, for Simulator.printAllStars() to print.

Coming up for air

That was a long journey through the weeds, because that sequence
diagram contained a boatload of stuff. In fact, one of the big take-
aways here is that a sequence diagram contains a ton of information
about how to write the code.

9.1. GOING BACKWARDS 149

A sequence diagram omits programming-specific details like whether
to create local variables and what to call them; whether you need
a loop and what type of loop you might choose; what the exact
formula is for a computation, or the logic to test for a condition;
etc. But it does present you with a silver platter that says which
objects of which types are intended to call which methods on which
other objects, and in what sequence.

In practice, I’d estimate that this works out to be about 70% or
so of the decisions the programmer would otherwise have to make.
What a windfall!

Before we move to our second example, let me tell you the two most
common errors I see among students trying to interpret (or create)
sequence diagrams:

1. Misinterpreting what the arrowhead-side of the arrow
means. Each arrow points to a line which represents the
object on which the method is being called. There’s a great way
to sanity check this: make sure that the class (for whatever
type of object the arrow is pointing to) actually has a method
of that name!

Figure 9.2 shows some common mistakes. Neither of the top
two sequence diagram fragments can possibly be correct, be-
cause they show an .add() method being called on a Review
object. Now I ask you: look at the class diagram – do you see
an .add() method on the Review class? Nope. That means
that right away, without even thinking any further, you can
rule out the top two sequence diagram attempts in that figure.

The bottom two versions pass this test, because in those di-
agram .add() is being called on a Movie object, which does
indeed have an .add() method.

2. Misinterpreting what the non-arrowhead-side of the
arrow means. Each arrow originates from a line which rep-
resents the object whose code is making the method call (on a
different object, normally).

150 CHAPTER 9. UML SEQUENCE DIAGRAMS

Figure 9.2: Many wrong ways to draw the sequence diagram arrow...and
one right way.

To sanity check this, we can’t look at the class diagram alone.
We have to think about what the code looks like. Suppose
this were the case:

class Editor {
...
public void approve(Review r, Movie m) {

...
m.add(r);

}
}

Even before we saw this code snippet, we already knew that
.add() would be called on a Movie object (and passed a
Review object as an argument) because that’s in line with
the class diagram. But what we learn now is where that line
of code exists. Is it written in a method of the Review class?
Or the Movie class? Nope – it’s in the .approve() method
of the Editor class. That tells us that the bottom of the
four sequence diagrams in Figure 9.2 is the correct one. The
third one shows a Review making the method call, but if
that were the case, the “m.add(r)” line would be somewhere
in Review.java.

9.2. GOING FORWARDS 151

Figure 9.3: The playlist program’s class diagram.

9.2 Going forwards

Using a sequence diagram to guide the implementation

Now normally we won’t be drawing a sequence diagram after we’ve
written the code, although that does actually happen sometimes,
like when we want to illustrate the behavior of a system to a new
member of our programming team. (It’s usually easier for them to
see the diagram at a glance than it is for them to wade through a
bunch of code and try to make sense of it.)

We’ll now start with a design (both class and sequence diagram),
and see what we can infer about what the code to implement it
should look like. Figures 9.3 and 9.4 give the design, which you are
encouraged to study in detail.

Here are some things we can read right off the sequence diagram
(starting at the top):

152 CHAPTER 9. UML SEQUENCE DIAGRAMS

Figure 9.4: One of the playlist program’s sequence diagrams.

1. Something in the TunesMgr class will call .instance() on the
PlaylistFactory class. (Notice that the second box from
the left is missing a colon, so it must represent the class
PlaylistFactory rather than an object of that type.) Since
we’re calling .instance() on a class rather than an object, it
had better be static; and when we look at the class diagram,
happily it is.

Furthermore, we can easily guess which TunesMgr method is
making that method call, since there’s only one listed for it:
main(). After calling .instance() on the class, it looks like
it calls .genSampleList("pop") on the object. Putting it all
together, we can surmise that this code should appear in our

9.2. GOING FORWARDS 153

TunesMgr.java file:

class TunesMgr {
public static void main(String args[]) {

PlaylistFactory pf = PlaylistFactory.instance();
Playlist p = pf.genSampleList("pop");
...to be continued...

}
}

All we had to figure out for ourselves was to store the return
values in variables, which seemed like a good idea.

2. Switching scenes to the PlaylistFactory, we get a good
sense of the innards of its .genSampleList() method. The
first couple of arrows coming out of :PlaylistFactory say
“new”, which as you may guess indicates an instantiation and
a constructor invocation. In the first case, we’re instantiat-
ing a new Playlist object. Apparently the constructor for
Playlist doesn’t take any arguments (or the sequence dia-
gram author didn’t bother specifying any). The Song object
we instantiate next, on the other hand, takes a slew of argu-
ments: a song title, artist, and filename.
After creating this new Song, we .add() it to the Playlist.
We then do the same for another Song. In sum, here’s the
kind of thing that .getSampleList() must contain:

class PlaylistFactory {
...
Playlist genSampleList(String genre) {

...
Playlist pl = new Playlist();
Song s1 = new Song("Bad Blood", "Swift", "badBlood.mp3");
pl.add(s1);
Song s2 = new Song("Roar", "Perry", "roar.mp3");
pl.add(s2);

...
return pl;

}
...

}

Now lest we be too hasty, let’s step back for a moment. The
above code might well not literally be in .getSampleList();

154 CHAPTER 9. UML SEQUENCE DIAGRAMS

after all, it refers to specific, hardcoded songs. It also doesn’t
take into account the value of genre; presumably, if we passed
“rap” or “classical” as the argument, we’d get a different
song selection. So I’m not actually saying that you can read
the code off the diagram without thinking. What the se-
quence diagram tells us, though, is good information about
what kinds of things will happen in each method. One could
imagine the real .getSampleList() reading song titles from
a file or from an Internet source depending on the genre, for
instance. Even in that case, though, all the sequence diagram
essentials would be the same: we’d be instantiating a new
Playlist and Songs, adding the Songs to the list, etc.

3. “Back to main()!” the sequence diagram announces. After
returning the Playlist (which Figure 9.4 suggests we call
“pl”) our main() method commences calling three methods
on it. We can thus further flesh out our main method as
follows:

class TunesMgr {
public static void main(String args[]) {

PlaylistFactory pf = PlaylistFactory.instance();
Playlist p = pf.genSampleList("pop");

p.shuffle();
int num = p.getNumSongs();
p.play();

}
}

Nothing explicitly told us to save the .getNumSongs() return
value in a variable, but we did it anyway. We’re also not
told what specifically we would do with that information –
perhaps display it for the user, or estimate the duration of
the playlist based on it. At any rate, for now we’ll just save
it and move on.

4. Finally, calling .play() on the Playlist turns around and
calls .play() on each of its Songs, not surprisingly. We can
thus deduce something like:

9.2. GOING FORWARDS 155

public class Song {
...
private ArrayList<Song> songs;
...
public void play() {

for (Song s: songs) {
s.play();

}
}
...

}

5. As for Song’s .play() method2, it apparently involves call-
ing its own .genStream() method, which in turn instantiates
an MP3Stream object to do the actual playing. After this,
it gets the Singleton .instance() from the SettingsCenter
(note that arrows can go right-to-left on sequence diagrams
in addition to left-to-right) and gets the user’s "volume" set-
ting. Finally, it calls .play() on its MP3Stream to play at the
correct volume. Putting it all together, we infer this sort of
code:

public class Song {
...
public void play() {

// ("0" means "start at the beginning of the song")
MP3Stream s = this.genStream(0);
int vol = SettingsCenter.instance().getSetting("volume");
s.play(vol);

}
...
public MP3Stream genStream(int pos) {

...
return new MP3Stream(this.filename, pos);

}
}

Here we choose to chain together the calls to .instance()
and .getSetting() rather than saving the SettingsCenter
instance to a variable. This is programmer’s discretion.

2Interestingly, note that there are three different methods called .play() in
this design, on each of three different classes: Playlist, Play, and MP3Stream.

156 CHAPTER 9. UML SEQUENCE DIAGRAMS

Many challenges and questions still remain: how exactly do we go
about generating sample playlists based on genre? What algorithm
will .shuffle() use? Do we play all the songs in a row, back to
back, or do we insert a few seconds of silence in between? How
exactly does the MP3Stream read the bytes off the disk and send
them to the audio speakers? Etc. These are important decisions,
every bit as important as what kind of wood and nails to use for
each wall we frame.

But the class diagrams and sequence diagrams have given us a tour
of the whole house as it was envisioned by the architect. We now
have a framework into which all the little decisions can be fit. And
that’s the first step towards an elegant and maintainable program.

Chapter 10

Persistence and hydration

Often, we want some of our objects to maintain their existence
between executions of the program. They’re intended to be durable
and lasting, and so we need a way to record their details in some
kind of permanent record so they can be resurrected later.

Examples abound. Consider a social media app, where new users
can register, login, post messages, friend each other, etc. We’d likely
store information about all this in various User, Post, Profile, and
FriendRequest objects. But it sure would be a bummer if all that
data disappeared any time the server needed to be restarted!

Or consider a drawing application, which we can use to create
figures like lines, rectangles, circles, and so forth, to create the
kinds of diagrams contained in this book. Our Drawing, Line, and
Rectangle objects, whose instances held information about posi-
tion, size, and color, would be next to useless if they weren’t able
to store themselves permanently somehow, to be reloaded in a later
execution of the app. It would be like a word processor without a
“save” function.

What we want is a way to persist (or save) an object, and hydrate
(or restore) it later. Persistence is taking an ephemeral, in-memory
object and writing it out to some form of permanent storage – a file
in the filesystem, a database, a network drive, or anything else that
will stay put even when the program ends. Hydration is the reverse
process: resurrecting that stored version of the entity’s state into a

157

158 CHAPTER 10. PERSISTENCE AND HYDRATION

living, breathing object once again.

10.1 Java object serialization

There are several ways to implement such operations. One, which
I don’t recommend, is built into Java and is called “serialization.”
The java.io package has two classes – ObjectOutputStream and
ObjectInputStream – for this purpose. The idea is that just as
you can write primitive types like integers and strings to a stream
with familiar file I/O operations, you can also read and write bona
fide objects themselves.1 Just open an ObjectOutputStream to a
file and call .writeObject(), and the object you pass, in its en-
tirety, will be saved in the file. ObjectInputStream.readObject()
performs the reverse process.

This all sounds like a great idea, but there’s some serious practical
difficulties to consider. For one, ObjectOutputStream stores ob-
jects in a binary format rather than a text format. This means
that the files it produces can’t be easily analyzed – they’re compact,
but opaque, sequences of 1’s and 0’s. If you try to open such a file in
a text editor like vim to inspect what objects and values it contains,
you’ll get gobbledy-gook. The upshot is that it’s nearly impossible
to debug your program or even figure out what was saved.

Just as problematic is the fact that serialization is not forwards-
compatible. When you write an object to a stream in this way, the
data that is persisted is hard-wired to the particular version of the
class the object is a member of. This isn’t a problem if your code is
completely, permanently stable. But during a development cycle,
you’re constantly changing the nature of many classes, including
their instance variables, names, and types. As soon as you change
a class in any significant way, bam!! all previously stored copies
of objects are now unreadable. When you try to hydrate them
with ObjectInputStream, it’ll break saying, “whoa, the class of this
stored object was an old version of the class – it doesn’t match the

1All objects that are saved and restored in this way must be from classes
that are declared to “implement” the java.io.Serializable “interface.” We’ll
talk about implementing interfaces in Section 12.4.

10.2. USING A DATABASE 159

current .java file.” And that data is, for all intents and purposes,
lost.

I’ve learned the hard way that when you persist objects, you want to
store them in a format which is transparent and forwards-compatible.
You need to be able to inspect exactly what was stored, and have
that data be readable even if you change the class’s definition later
on.

10.2 Using a database

An excellent solution for persistence and hydration is to use a
Database Management System (DBMS) like MySQL, PostgreSQL,
or MongoDB. These products specialize in this very task. Some, like
those with “SQL” in the name, create relational databases which
hold rectangular tables of data records, sort of like gigantic spread-
sheets. Others are called non-relational or NoSQL databases
and can store data in a more flexible, non-rectangular format. Pro-
grams in Java (or any other language) can create connections
to either kind of database, and read/write to them with standard
commands.

The reason I won’t go further into this option is because it’s really a
separate topic from OOA&D, and merits a whole course in its own
right (at UMW, it’s CPSC 350). Once you learn that material, it’s
really the best way to do the whole persistence/hydration thing.

10.3 Using plain text files

In this book, I’ll just explain how to do caveman-style persistence
and hydration: using plain text files. This will allow you to leverage
your basic file I/O knowledge from previous programming courses
to achieve our purpose of making objects persistent.

The first thing we need to decide is how to organize our storage.
Should each object have its own file? Should all objects of the same
class be stored in one file? Or should everything we want to persist
be stored in one file?

160 CHAPTER 10. PERSISTENCE AND HYDRATION

There are arguments for all of these, and it really comes down to
the needs of the application. If we have a file-based save/restore
paradigm, like our drawing editor example from earlier, it probably
makes sense to store everything in a single file. When the user
chooses “save,” we write their entire drawing to the filename of
their choice, and when they choose “open,” we read it back.

In a social network scenario, on the other hand, we probably want
more granularity. As soon as a user posts a new message or changes
their status, we want to create or re-write one file (not our entire
memory footprint) with the updated information. This way we can
write in little snippets as we go, creating a bunch of files in a direc-
tory that collectively represent the entire state of the application.
When the system is taken down and rebooted later on, it reads all
those files to reconstruct its previous state.

Example: a resort reservation system

Here, let’s assume that we want the first scenario: a single file that
contains all relevant information to the application. We’ll create
part of a simple hotel reservation system, which stores and retrieves
information about various resort destinations. It consists of just two
classes: Resort, objects of which represent individual hotels; and
ReservationSystem, the main program.

For simplicity, I’m only going to show the parts of the program that
are related to persistence and hydration. (Clearly there are lots of
other things the code would need to do, like display lists of matching
hotels in response to searches, and actually make reservations.)

The key idea is this. Each class whose objects we want to save
needs two things:

• For persistence, a .persist() method that writes the object
out to the PrintWriter2 passed.

2PrintWriter is a class in java.io that has .println()methods for various
data types. I like it for that reason. Otherwise, it’s essentially the same as any
other kind of Writer, like a FileWriter.

10.3. USING PLAIN TEXT FILES 161

• For hydration, a constructor that takes a Scanner3 and cre-
ates a new object based on the information queued up on that
Scanner.

Let’s do the Resort class first. The key question is: what do we
want the persisted form of a Resort object to look like? Any way
of writing all the necessary information in a way that we can un-
ambiguously get it back will do. I vote for this:

Westword Spa and Surf
312-555-1234
5 stars
$$$
This luxurious beach property
is a pleasure for all who visit.
Dogs and cats welcome too!
.

The textual representation of a Resort consists of the following
parts:

1. A single line of text giving the resort’s name.
2. A single line of text giving the resort’s telephone number.
3. A single line of text with a digit from 1 to 5, followed by a

space and the String “stars” (or “star”).
4. A single line of text with dollar signs, the number of which

indicates the expense of the resort (on a scale of $ to $$$$).
5. One or more lines of text giving a description of the resort.
6. A line containing only a period.

As you’ll remember from your previous programming courses, that
last item (#6) is called a delimiter since it “delimits” (marks the
end of) the resort entry.

Now, for the Java class. Figure 10.1 almost has what we want.
Look at it carefully.

3A Scanner is a class in java.util that can parse primitive types from a
stream of text.

162 CHAPTER 10. PERSISTENCE AND HYDRATION

class Resort {
private String name, desc, phone;
private int rating, cost;

Resort(Scanner s) {
name = s.nextLine();
phone = s.nextLine();
rating = s.nextInt();
s.nextLine(); // read and discard the " stars" part.
cost = s.nextLine().length();
desc = "";
String next = s.nextLine();
while (!next.equals(".")) {

desc = desc + next + "\n";
next = s.nextLine();

}
}

void persist(PrintWriter pw) {
pw.println(name);
pw.println(phone);
pw.println(rating + " " + (rating == 1 ? "star" : "stars"));
for (int i=0; i<cost; i++) {

pw.print("$");
}
pw.println(); // newline for the $$$
pw.println(desc);
pw.println(".");

}
}

Figure 10.1: Our first cut at the Resort class.

Resort: hydration

In Figure 10.1, the constructor is used for hydration. Perhaps the
trickiest thing about it is that we pass it a Scanner object. Even if
you’ve worked with Scanner before, this may be a new idea to you:
passing one around between objects so that different objects can
read different parts of a file. But that’s precisely what we’re doing
here. Remember that with file I/O, you have a cursor open to a file,
which is always “at” a particular location within the file. Reading
from the Scanner (perhaps using one of the .next*() methods like

10.3. USING PLAIN TEXT FILES 163

.nextInt() or .nextLine()) advances the cursor through the file
to the next bit.

So when a client calls “new Resort(someScanner)”, they’re saying
“this Scanner’s cursor is currently positioned right at the beginning
of some resort information. So please hydrate one Resort object
for me by reading just that much of the file.”

The constructor proceeds to do just that. It reads the name, phone
number, rating, cost, and description, in that order, ending when
it reaches (and reads past) the period (“.”) delimiter. I’ll let you
glance through the code and see if you agree with my implementa-
tion here. There are a few interesting nuances, like:

• When reading the rating (“4 stars”) we call .nextInt() to
read the number part, and then .nextLine() to read past
and discard the rest of the line.

• When reading the cost (“$$$$”) we take the length of the
string (the number of dollar signs) and store that number.

• When reading the possibly-multi-line description, we contin-
ually keep a lookout for the delimiter. As long as the lines we
read are not the period on a line by itself, we append them to
the end of our desc inst var, along with the newline character
(“\n”) that .nextLine() discards.

All just fiddly stuff.

Resort: persistence

The inverse process of our constructor is our .persist() method,
which works similarly: given a PrintWriter – to which other in-
formation has quite possibly already been written – write out the
text representation of this Resort object.

Just a few things of note here:

• If you haven’t seen the wacky syntax at the end of the “rating”
line, it’s worth knowing. It’s called a “conditional expression”
or a “question-mark-colon operator” and is a compact way
of sticking a short if/else onto one line. It means “if the
boolean expression before the question mark is true, replace

164 CHAPTER 10. PERSISTENCE AND HYDRATION

this whole expression with the thing before the colon; oth-
erwise, replace it with the thing after the colon.” Less than
legible to beginners, but a nice shortcut for experts.

• A simple for loop converts the integer cost into a string of
dollar signs. We also have an explicit .println() after that
loop so that we include the line feed after those dollar signs.

• We explicitly write the delimiter (“.”) at the end of the de-
scription, so that when read back by the hydration process,
the constructor knows where the description stops.

Clearly the persistence and hydration code for a class need to be
kept in lock-step with each other. Adding a new field to the former,
for instance, necessitates us reading that field in the latter.

Detecting the end of a sequence

I said above that Figure 10.1 is almost what we want. We’re going to
make one change to it. When a client calls “new Resort(someScanner)”,
it’s expecting the constructor to hydrate a Resort object and hand
it over. But consider: what if there are no more Resort objects in
the file?

Let’s zoom out a second and appreciate the context in which the
Resort constructor will be called. We’ve made the design decision
to store all our application’s information in a single file. This means
that our save file is going to have lots of resorts in it, back-to-
back-to-back, each separated from the following one by the period
delimiter.

This in turn means that our code in ReservationSystem is going
to be calling “new Resort(someScanner)” in a loop to hydrate all
the objects. This will work great until the point at which we hit
the end of the list. What then?

In that case, the Resort constructor can’t be allowed to finish,
because it doesn’t make sense for an object to be constructed at
all. So what should the constructor do in that case? Throw an
Exception, of course, as we learned in Chapter 5. This indicates to
the client that the instantiation failed – there is no Resort object
to be constructed, and the client should do what’s appropriate in

10.3. USING PLAIN TEXT FILES 165

that event (in this case, simply stop reading from the file).

The exception we throw can either be a “plain old Exception,” or a
special type of exception that we create for this purpose. The lat-
ter approach requires the technique of inheritance, which we won’t
cover until the next chapter. But I’ll give you a preview. By simply
creating a one-line NoMoreResortsException.java file:

class NoMoreResortsException extends Exception {}

voilà, we can now throw NoMoreResortsExceptions in addition to
plain old Exceptions. This increases code readability (it’s obvious
from the class name what this kind of exception indicates) and also
allows us to distinguish this type of exception from other kinds of
things that might go wrong (for instance, a bad filename or other
problem accessing the filesystem).

The only other question is: how does the constructor know when
it’s reached the end of the sequence of resorts? Depending on how
we choose to structure the file, it might be when the end of the file
is reached, or when some other delimiter is encountered. Let’s do
the second case, and say that at the end of the resorts list, our file
will contain a line with these five characters: “-END-”. When we hit
this, we’ll know there are no more resorts to be hydrated.

Figure 10.2 has the modified Resort constructor. It’s exactly the
same except that after reading what it supposes is the resort’s name,
the constructor sanity-checks that against the string “–END-”. If
they’re equal, it realizes that it didn’t read a resort’s name after
all, but instead it hit the end of the list. In response, it abandons
the rest of the constructor, refuses to instantiate an object, and
throws the exception back to the caller.

ReservationSystem: hydration

And now, what does our overarching “read and write the whole file”
code look like? Again, it depends on the structure of the file itself.
Let’s say it’s formatted as in Figure 10.3. This file is comprised of
the following parts:

166 CHAPTER 10. PERSISTENCE AND HYDRATION

Resort(Scanner s) throws NoMoreResortsException {
name = s.nextLine();
if (name.equals("-END-")) {

throw new NoMoreResortsException();
}
phone = s.nextLine();
rating = s.nextInt();
s.nextLine(); // read and discard the " stars" part.
cost = s.nextLine().length();
desc = "";
String next = s.nextLine();
while (!next.equals(".")) {

desc = desc + next + "\n";
next = s.nextLine();

}
}

Figure 10.2: The modified Resort constructor.

1. A line with the resort chain name.
2. The year this data is applicable to, followed by some other

text (“ season”).
3. Another line of preamble (the hyphens), which we just have

to read past.
4. A sequence of resort entries, each of which is delimited with

a period.
5. The line “-END-” to indicate the end of the sequence.
6. A copyright notice, which we just have to read past.

Given this structure, our ReservationSystem’s constructor should
work as in Figure 10.4 (p. 168). Check out that try/catch/while
loop construct very carefully. It’s short, but it’s also a doozy. Inside
the body of the try block, we have what appears to be an infinite
loop: after all, while(true) means “forever.” So we instantiate a
Resort object and add it to our ArrayList, do it again, do it again,
do it again...

But it’s not really infinite and here’s why: eventually, the Resort
constructor is going to discover that there aren’t any more resort
entries in the file. When we ask it to hydrate the fourth Resort
from Figure 10.3, the constructor won’t return: instead, it’ll throw

10.3. USING PLAIN TEXT FILES 167

Holiday Inn resorts
2019 season

Westword Spa and Surf
312-555-1234
5 stars
$$$
This luxurious beach property is a pleasure
for all who visit. Dogs and cats welcome too!
.
Roadkill Motel
306-555-4444
1 star
$$
The 1970's-style armchairs aren't the problem:
the holes in the walls and the odorific properties
are. Traveler beware!
.
ABC Inn
123-456-7890
3 stars
$$
Nothin' fancy, nothin' broken. Your basic motel
for the budget (but hygiene-conscious) traveler.
.
-END-
Copyright (C) 2019

Figure 10.3: The file format for our resort reservation system.

a NoMoreResortsException. When that happens, we pop out of
the try block and into the catch block, which is outside the body
of the loop. So we’re officially done with the loop at that point, and
carry on to read the copyright information at the end and we’re
done.

And what does the catch block do? Nothing. That may seem
pretty weird, but a moment’s thought will convince you otherwise.
What should we do when we reach the end of the resorts? Simply
carry on. Even though it’s an Exception, it’s not really an “error.”
It just means, “oh, you wanted another Resort object, but actually
there aren’t any. Carry on with your other business, Mr. Client.”

To be crystal clear, here’s what happens in the try/while construct
when we read Figure 10.3:

168 CHAPTER 10. PERSISTENCE AND HYDRATION

public class ReservationSystem {
private int year;
private String chainName;
private ArrayList<Resort> resorts;

ReservationSystem(String filename) throws Exception {
this.resorts = new ArrayList<Resort>();
Scanner s = new Scanner(new FileReader(filename));
this.chainName = s.nextLine();
year = s.nextInt();
s.nextLine(); // Read past " season"
s.nextLine(); // Read past line of hyphens

// Read all the resorts.
try {

while (true) {
Resort r = new Resort(s);
resorts.add(r);

}
} catch (NoResortException e) {
}

s.nextLine(); // Read past copyright
}

}

Figure 10.4: The ReservationSystem class’s constructor.

1. It hydrates a Resort object, and adds it to the resorts
ArrayList.

2. It hydrates a Resort object, and adds it to the resorts
ArrayList.

3. It hydrates a Resort object, and adds it to the resorts
ArrayList.

4. It tries to hydrate a Resort object...but catches the exception
instead, pops out of the try block (and therefore also the
while loop) entirely, and goes to the catch block.

5. The catch block does nothing.
6. It carries on reading the rest of the file.

Note carefully that no exception is thrown from the constructor
of the ReservationSystem class in this case! Rather, the ex-

10.3. USING PLAIN TEXT FILES 169

ceptions thrown by the Resort constructor are caught and dealt
with by the ReservationSystem constructor. The only time the
ReservationSystem constructor would throw an Exception is if
something went wrong when trying to read the file (in which case
an Exception, rather than a NoMoreResortsException, would be
generated).

ReservationSystem: persistence

Finally, the .persist() method of the ReservationSystem class:

void persist(PrintWriter pw) {
pw.println(chainName);
pw.println("" + year + " season");
pw.println("-----------------------------------");
for (Resort r : resorts) {

r.persist(pw);
}
pw.println("Copyright (C) " + year);
pw.close();

}

It’s quite simple. The main part is simply calling the .persist()
method on each Resort object, so that they can persist themselves.
The stuff before and after is just for the boilerplate.

Chapter 11

Inheritance (1 of 2)

If one had to name object-oriented programming’s most “killer fea-
ture,” a good case could be made for inheritance. This specific
technique for code reuse and modular flexibility underlies much of
the “magic” that happens in well-architected OO programs, includ-
ing most of the design patterns we’ll consider in later chapters.
Developers need to know it, and know it well.

Interestingly, inheritance is used for two distinct (and essentially un-
related) reasons to achieve two very different kinds of results. I call
these “top-down inheritance” and “bottom-up inheritance,”
for reasons I’ll explain; the more standard terms are interface in-
heritance and implementation inheritance, respectively.

Curiously, when I was a young’un taking object-oriented program-
ming in college, we learned only about the latter of these, and I was
mystified early in my career when I saw the former in action and
had no idea what the code was doing. Only then did I realize that
although bottom-up inheritance is indeed useful, top-down inheri-
tance is the real game changer. We’ll cover both in this chapter.

11.1 “Bottom-up” (implementation) inheritance

As you know, the Java API contains a class called ArrayList. The
class diagram below shows an abbreviated version of it. Already
there’s one possibly unfamiliar element to you here: the literal

171

172 CHAPTER 11. INHERITANCE (1 OF 2)

word “Object”. It might seem odd to learn that there is a class
called Object, but that is indeed the case. And in fact this very
class will come back later in the chapter and play a major role in
Java’s version of inheritance. For now, just consider that we are
working with the non-generic ArrayList type – i.e. the user will
not declare “ArrayList<String>” but plain-ol’ “ArrayList” – so
that the things that can be stored in it are “any type of Object.”
That’s why we’re using the most general possible word here as the
argument of .add(), .remove(), etc.

Figure 11.1: An abbreviated
ArrayList class.

Now suppose we were writing a
program that needed to man-
age a bunch of list-like data,
and that ArrayList was just
the ticket...except that it was
missing one or more important
features. For example, maybe in
addition to inserting, removing,
counting, etc., we also needed
the ability to count the number of unique elements in a list. The
client code we’d like to be able to write is in Figure 11.2.

public static void main(String args[]) {
ArrayList n = new ArrayList();
n.add("Harry");
n.add("Ron");
n.add("Hermione");
n.add("Harry");
n.add("Harry");
n.add("Dumbledore");

System.out.println(n.get(3)); // prints "Harry"
System.out.println(n.size()); // prints 6

// *We want this to print 4, but no such method:
System.out.println(n.countUnique());

}

Figure 11.2: Some client code we’d like to be able to write in our hypo-
thetical program.

11.1. “BOTTOM-UP” (IMPLEMENTATION) INHERITANCE 173

Figure 11.3: A first approach to enhancing a regular ArrayList.....

Figure 11.4:but this necessitates duplicating all the original methods.

This client code already works except for the last line, which of
course contains a method we just made up. It’s sad that ArrayList
meets all our needs except this one teensy one.

Several ways to get around this limitation come to mind. We could
use a has-a association between ArrayList and a new class of our
devising, “CountUniqueArrayList.” Each CountUniqueArrayList
would have an ArrayList “under the hood” which it would use to
actually store the data. Figure 11.3 gives the idea.

After writing the .countUnique() code, the last line of Figure 11.2
would work like a charm. Trouble is...the other lines wouldn’t
work anymore. / Obviously we have to be able to do “normal”
ArrayList things with our class as well as calling our new special
method. So we’d have to duplicate all the other ArrayList meth-
ods on our new class, and have them “pass through” the arguments
to the underlying ArrayList that it holds. The result is the un-
wieldy, repetitive monstrosity in Figure 11.4, which is obviously not
a good solution. Here’s what each of our “pass-through” methods
would look like:

174 CHAPTER 11. INHERITANCE (1 OF 2)

public class CountUniqueArrayList {
private ArrayList al;

public void add(Object o) {
al.add(o);

}
public int size() {

return al.size();
}
...etc...

At the very least, this is clumsy, duplicative, and error-prone. But
it could be even worse, if the ArrayList class evolves. Suppose the
Java API expands to include a .shuffle() method on ArrayList,
which randomly jumbles the contents of the list? Every ArrayList
in every line of Java code in the world could instantly take advan-
tage of that. But our stunted CountUniqueArrayList could not:
it would have to be changed to add a .shuffle() pass-through
method before it could do what any other ArrayList could auto-
matically do.

Figure 11.5: Diagrammatic elements for inheritance. (Compare with Fig-
ure 6.2, p. 91.)

The solution is to use inheritance. Instead of “has-a,” an inheri-
tance association means “is-a.” (See Figure 11.5.) Instead of each
CountUniqueArrayList having an ArrayList, we’re declaring that
a CountUniqueArrayList in fact is an ArrayList. This gives it all
the rights and privileges of any ArrayList including all of its meth-
ods and instance variables. All the code in Figure 11.2 instantly
just flat works. The UML equivalent is shown in Figure 11.6. Note
carefully that we use an open-triangle arrowhead to designate in-
heritance, and that there are no other navigability, multiplicity, or
role indicators.

11.1. “BOTTOM-UP” (IMPLEMENTATION) INHERITANCE 175

Figure 11.6: Bottom-up inheritance in action. (Note the open-triangle
arrowhead.)

This may seem like cheating. Surely if we want to call a method
on an object, we’re entitled to see that method in the UML dia-
gram for that object’s class? Clearly, .add(), .get(), and .size()
do not appear in CountUniqueArrayList’s box. But the magic of
inheritance makes it work anyway. The rule is that you can call
a method on an object if that method is defined on the object’s
class...or on any superclass. ArrayList is said to be the “super-
class” of CountUniqueArrayList. And that brings us to a slew of
equivalent terminology.

All of these expressions mean exactly the same thing:

A is-a B
A inherits from B
A specializes B

A is a subclass of B
A is a subtype of B

A is a derived class of B
B generalizes A

B is the superclass of A
B is the supertype of A
B is the base class of A

You know something’s an important concept when there are a zillion
equivalent terms for it. And so it is with inheritance.

Sometimes we say “A is a class, and B is its superclass.” Other times
we say “B is a class, and A is a subclass.” These aren’t contradictory
statements – it’s like saying I’m both a son (of my mom and dad)
and also a father (of my three kids). You can totally be a son and a

176 CHAPTER 11. INHERITANCE (1 OF 2)

Figure 11.7: A Student is a special kind of Person, but a genuine Person
nonetheless.

father at the same time. And a class can be both a superclass and
a subclass.

By the way, if you have sharp eyes, you’ll have noticed I said “or
any superclass” a few paragraphs ago. That’s because if A inherits
from B, B can in turn inherit from some other class, which can itself
inherit, etc. All the classes and their related sub/superclasses form
what’s known as an inheritance hierarchy.

Under the hood

You might wonder how this magic works behind the scenes. It’s ac-
tually pretty simple. When we instantiate a CountUniqueArrayList,
we not only allocate memory for all the CountUniqueArrayList-
specific parts (if any), but also for its superclass parts.

Let’s take a different example so that we know what the “parts”
actually are.1 Figure 11.7 shows two classes in an inheritance re-
lationship: a Student is-a Person. While a Person in general has
a name and and age, the special type of person called a “Student”
also has an eagleOneID and a gpa.

1It may or may not surprise you that I honestly don’t know what instance
variables the java.util.ArrayList class has, or what they’re named. This is a
perfect example of the wonders of encapsulation: millions of people across the
globe use ArrayLists every day, and do not know or care how they function
internally!

11.1. “BOTTOM-UP” (IMPLEMENTATION) INHERITANCE 177

Figure 11.8: A Student, and an ordinary Person, in the heap.

Now when we instantiate each of these classes:

public static void main(String args[]) {
Person tony = new Person();
tony.setName("Tony Stark");
tony.setAge(39);

Student peter = new Student();
peter.setName("Peter Parker");
peter.setAge(17);
peter.setGPA(3.85);
peter.setEagleOneID("000518989");

}

the objects of each type look like Figure 11.8. See how the Student
object has both the required Student and Person instance variables,
since it is both a Student and a Person. To Java, the fact that the
Person “stuff” is in a separate little chamber inside the Student
box is just a detail.

The reason I call this technique “bottom-up inheritance” is that
in order to use the special features of your new class, you need
to know you have an instance of the subclass. In the code above,
we couldn’t call .setGPA() on an ordinary Person: it would have
to be a Student. We couldn’t call .countUnique() on just any
Joe ArrayList – only CountUniqueArrayLists have that special
method. Hence, the code that uses the classes views the hierarchy

178 CHAPTER 11. INHERITANCE (1 OF 2)

Figure 11.9: Top-down inheritance in action.

“from the bottom-up”; i.e., from the perspective of the subclass.
In fact, if all we instantiate are Students (not Persons), then our
main() method doesn’t even need to know there is a superclass.
To main(), it’s all about Students, and the fact that you can do
ordinary person-ish things to a Student – like set its age, or ask it
to .work() or .sleep() – seem just like other aspects of Students.

The conventional term for this, “implementation inheritance,” comes
from the fact that the reason we’re inheriting is to steal the imple-
mentation. Someone has already gone to the trouble of writing an
ArrayList class – or a Person class – and we don’t want to reinvent
the wheel. So we make use of that implementation (the code in the
methods) and just add whatever else we want to the mix.

11.2 “Top-down” (interface) inheritance

Now top-down inheritance is where the real action is.

Let’s go back to our ArrayList example, and this time I’m going to
write a different subclass, called “SortedArrayList.” Figure 11.9
shows this arrangement. The open-triangle arrow and the word
“is-a” are just the same. The one thing that might strike you as
odd, though, is that the methods on the subclass are also all on the
superclass. Hey, we already had an .add(), an .insert(), and a
.set(): what good is our new class that just duplicates this? As
it turns out, a lot.

To explain why, first let me articulate my motive for creating the
SortedArrayList type in the first place. I might have a program
that needs to store various bits of data in ArrayLists – a common
enough task – but it needs some of those lists to always remain in

11.2. “TOP-DOWN” (INTERFACE) INHERITANCE 179

sorted order. Exactly what “in order” means depends on the data
type, but we could expect for Integers it would be numerical order,
for Strings alphabetical order, etc.

It’s easy to imagine a program that would need this feature. Per-
haps it needs to print the various lists in some kind of reliable
sequence, or to perform fast lookup via a binary search. Anyway,
the point is: if I create a SortedArrayList, I’m doing so because I
want a guarantee that no matter what I do to that list, I can always
get the stuff out quickly, and sorted.

Now if you think it through, you’ll realize this is a different kind
of situation than we had with CountUniqueArrayList. Previously,
we had a new feature we wanted to add to an existing class – an
ArrayList could do many things, but not count its number of dis-
tinct elements, and so we tacked that feature on to the top of it. But
now, we don’t want a new feature so much as different behavior for
the original features. We don’t want to add any new methods, but
have the existing methods act differently. And thus is the essence
of top-down inheritance.

Before we see it in action, let’s think about the implementation.
You’ll notice that in Figure 11.9 only some of the methods appear
in the subclass. These are called overridden methods: we say
that SortedArrayList’s .add() “overrides” the base class’s .add().
Now can you figure out why those particular three methods are the
ones we chose to override?

If you’re sharp, you’ll realize that those three methods are the only
ones which, if we called the ordinary ArrayList version, would
threaten to jeopardize the sorted nature of the list:

• If we have a sorted list, and .add() an item to it, our new
expanded list might be unsorted if .add() just tacks the new
item on to the end. Hence, we must override .add() with
a version that adds the new element in the correct place.

• If I have a sorted list, and .remove() an element from it, the
shorter list will still be sorted. So the superclass’s .remove()
doesn’t mess anything up, and we can stick with it. No need

180 CHAPTER 11. INHERITANCE (1 OF 2)

to add a version to SortedArrayList at all.

• Whether the list’s elements are sorted or not, .size() acts
the same for Pete’s sake, so we hardly need to override that
one.

• On the other hand, if we .insert() an element at a spe-
cific location, we’ll mostly likely disturb the ordered-ness, so
we must override .insert() as well, so that it puts the
new element only where it truly belongs.

• The .get() method is an easy call: retrieving element #9 out
of a list doesn’t have any different behavior if the elements are
sorted or not, so we leave that one out.

• Lastly, though, we must override .set() since changing
one element’s value could throw the ordered-ness out of kilter,
requiring resorting.

If you followed all that, you’ll realize that the choice of which meth-
ods to override in the subclass wasn’t an arbitrary one. It was dic-
tated directly by the behavior we wanted our subclass to guarantee
and preserve. Methods whose default implementations (in the su-
perclass) wouldn’t work for our new type (in this case, those that
threatened to jeopardize the order) must be replaced with versions
appropriate to the subclass.

The word “override” is a good one, and it conveys almost exactly
what it means, although don’t make the mistake of thinking that
the ordinary ArrayList’s .add() method is completely obliterated
by what we’ve done. Au contraire, for plain-Jane ArrayLists all
over the world, that original .add() code will still run. Only if
the object in question is one of our special subtype – only if it’s a
SortedArrayList in addition to being a plan ArrayList – will our
new method be substituted. Put another way, we’re not “overrid-
ing the .add() method for everybody,” just for objects of our new
special type.

11.2. “TOP-DOWN” (INTERFACE) INHERITANCE 181

Test your intuition

Okay, now to drill the concept all the way home. I want to ask
you a question. Before reading on, consider the code below and ask
yourself “what will its output be?” (Commit to an answer before
you continue.)

public static void main(String args[]) {
SortedArrayList sal = new SortedArrayList();
sal.add("Thor");
sal.add("Bruce Banner");
sal.add("Captain America");

getMad(sal);

for (int i=0; i<sal.size(); i++) {
System.out.println("Hero #" + i + " is " + sal.get(i));

}
}

private static void getMad(ArrayList al) {
al.set(0,"Hulk");

}

To figure this out, we first observe that the code is instantiating our
new special kind of ArrayList: a SortedArrayList. Therefore, we
know that when sal.add() is called, it’s our new .add() that will
get executed. (Later in main(), we call sal.size(), and this will
of course trigger the ordinary .size() since we didn’t override that
method.)

Now the big question, and the point of this exercise, is to con-
sider what happens inside the getMad() function. Note very care-
fully that getMad() takes an argument of type ArrayList, not
SortedArrayList. So getMad(), you might say, is itself unaware
that SortedArrayLists even exist, let alone that it’s about to be
given one.

So I ask you: will ArrayList’s ordinary .set() method be called,
or will it be SortedArrayList’s new, ensure-the-list-stays-sorted
.set() that will take over?

182 CHAPTER 11. INHERITANCE (1 OF 2)

The critical answer is: the subclass’s method will be called, even
though the function itself doesn’t know it’s dealing with a subclass.
SortedArrayList.set() will be called in this case, which will swap
Hulk with Captain America to keep the list alphabetically sorted,
giving this output:

Hero #0 is Captain America
Hero #1 is Hulk
Hero #2 is Thor

This surprises lots and lots of folks. It certainly surprised me when
I learned it (considerably after graduating college). I originally
reasoned as follows: “getMad() was written to take an ordinary
ArrayList, and hence its code was designed with only ArrayLists
in mind. Surely this means that our three-hero-list, when getMad()
receives it, will be treated just as any normal ArrayList would be.
All that special overriding method stuff only happens when we know
we’re dealing with a SortedArrayList in particular.”

The exact opposite is true. And it turns out that’s how we want it to
be. Consider this very example: what good is a SortedArrayList
if it doesn’t stay sorted? That was the whole point of the subclass!
Yet we’d be threatening to violate this very principle if we ever
passed it into contexts which didn’t know it needed to be sorted,
and hence unwittingly jumbled it up. We must guarantee that
every time .add(), .insert(), or .set() is called on it, our new
functionality is triggered, whether or not the user of the object even
knew that.

“Masquerading” and “smuggling”

Now why do I call this “top-down inheritance?” The reason is that
unlike with bottom-up inheritance, you can use objects of your new
subclass without knowing they’re of that subclass, or that there even
is a subclass. As a user of the classes – like main(), above – you’re
looking at the inheritance hierarchy from the top down.

A couple of other descriptive words I like to use for this are “mas-
querading” and “smuggling.” Here, the SortedArrayList sal is

11.2. “TOP-DOWN” (INTERFACE) INHERITANCE 183

masquerading as an ArrayList – pretending to be one for the sake
of the getMad() function. (And of course it’s not actually “pre-
tending” because a SortedArrayList truly is-a ArrayList.) From
main()’s point of view, we smuggled a SortedArrayList into the
getMad() function, in cognito. Little did getMad() know that it
wasn’t even dealing with an ordinary object of the base class. It
was fooled by the disguise.

Why this matters

The reason this idea is so powerful is that it allows programmers to
decouple the what from the how.

A chunk of code that only knows about the superclass (in our ex-
ample, ArrayList) can dictate what to do with it. “First I’ll .add()
these three elements, then I’ll .remove() one, then get the .size(),
etc.”

In response to these method calls, the object itself – perhaps of a
specialized subclass – decides how to carry out each one. An ordi-
nary ArrayList tacks the new element onto the end when it’s told
to .add() one, whereas a SortedArrayList decides to stick it in the
appropriate place to preserve the order. The original code chunk
can be blissfully ignorant of how the details of .add(), .insert(),
etc. work for any particular type of ArrayList.

If you’re a videogamer, think of it in Smash Bros. terms. Every
character in the game looks different, has different attack stats,
different animations for punching and falling, a different “up smash”
and “side special,” and so forth. But the main game engine code that
coordinates the interaction between characters on a stage doesn’t
have to worry about all those details. It can simply say, “hey, P1
(character #1), your player just input a dash-left. Display the
appropriate animation please.” The object for P1, who may happen
to be Zelda, then displays her determinedly zooming to the left with
her hair flowing behind her.

The game then says, “hey, P4, you just got punched. First, tell
me your weight class so I know how far the knockback should be.”
If character #4 is Peach, her object responds, “I’m in the medium

184 CHAPTER 11. INHERITANCE (1 OF 2)

weight class.” The game then says, “thanks. Now display your ‘hit
stun’ animation from your current position up to coordinates 562,
431.” The Peach object then shows her character flying through
the air with her umbrella in a tizzy.

For even moderately complex programs, this ability to compart-
mentalize these two jobs is crucial – otherwise you end up with
a 500-line function that’s a mass of spaghetti code. Software en-
gineers call this decoupling “separation of concerns,” and it is
among the most important principles in all of software development.

11.3 “Cool! Can we do both?”

A common question at this point is whether top-down and bottom-
up inheritance can be combined in a single class. The answer is yes!
If you create a subclass A of another class B, you could have some
methods of A override the existing methods of B, and you could also
have some brand new methods in A that weren’t present in B.

Any code that deals with B objects will automatically work for A
objects also, and your new method implementations will be called
when it does. And you can write code that calls your brand new
methods, as long as that code knows it’s dealing with an A.

It’s not super common to combine the techniques, but I’ve seen it
done.

11.4 A word of warning

I’ll finish this chapter with an observation from my years coding.
Inheritance tends to be both an underused feature and an overused
feature.

What I mean is that programmers (even experienced ones, sadly)
sometimes fail to recognize situations in which inheritance would be
appropriate, and their code becomes less elegant and more brittle as
a result. Even more worrying, I’ve seen more than one “inheritance-
happy” programmer in my career use it where it’s not called for.
And this turns out to be even worse.

11.4. A WORD OF WARNING 185

Although there are shades of grey, the basic rule for knowing when
inheritance is appropriate can actually be boiled down to a single
principle:

� Remember that “is-a” means “is-a.” �

The time not to use inheritance is when you see some code that you
want to reuse, but you really don’t have a conceptual “subtype” in
mind.

An actual example: suppose your team is building a database sys-
tem for 5k and 10k race results. There’s a Runner class with inst
vars like name and gender and dateOfBirth. Then you say, “all
right: to record a performance in a particular race, we need all that
information about the runner, plus the bib number, finish time,
date and location of the race.”

You may be tempted (as a colleague of mine once was) to create
a Performance class which inherits from Runner. After all, every
Performance object would then possess all the necessary attributes
– those of the racer, and those of the race. What’s not to like?

Well, there are two problems. One is conceptual: could one possibly
claim that a Performance is-a Runner?! Obviously not. The very
fact that you could call .getGender() on a Performance object, or
pass a Performance to a Race.register() method defies logic.

The other problem is practical: as these two nonsensically-joined
classes evolve, more pressure builds in the system that exposes the
design flaw. When a data entry mistake is corrected, for example,
changing a Runner’s name from "Stanly" to "Stanley", only one of
Stanley’s performances will have its name corrected; the other inde-
pendent copies for his other performances remain out of date. Even
worse, suppose the need arises for different (legitimate) subtypes of
Runner: AmateurRunner and CompetitiveRunner, say. Now the
Performance class is really in a bind: it only inherits from the
more general type, and would have to proliferate itself awkwardly
(“AmateurPerformance” and “CompetitivePerformance”) just to
stay in sync.

186 CHAPTER 11. INHERITANCE (1 OF 2)

The lesson here is that your object-oriented model should strive to
faithfully reflect conceptual reality; it should not use design features
in gimmicky ways to achieve short-term programming wins. Always
ask yourself “does this choice of classes really make sense?” as your
guiding question.

Chapter 12

Inheritance (2 of 2)

I split what was once a long inheritance chapter into two. So you’re
probably back from a snack break, a nap, or a game of Ultimate.
Let’s get warmed up again.

A class diagram for a “Zoo” program is in Figure 12.1. Study the
code on the following page (Figure 12.2) and predict its output.

Figure 12.1: A class diagram for the Zoo program.

We have an Animal class with a number of subclasses, and one of
them even has its own subclass. In each case, we override one, both,
or neither of the base class’s methods.

187

188 CHAPTER 12. INHERITANCE (2 OF 2)

class Animal { class Bird extends Animal {
public void makeNoise() { public void makeNoise() {

System.out.println("Growl!"); System.out.println("Chirp");
} }
public void move(int dist) { public void move(int dist) {

for (int i=0; i<dist; i++) { System.out.println("Flap");
System.out.print("tramp "); }

} }
System.out.println();

}
} class Duck extends Bird {

public void makeNoise() {
System.out.println("Quack");

class Cow extends Animal { }
public void makeNoise() { }

System.out.println("Mooooo");
}

} class Bear extends Animal { }

class Zoo {
public static void main(String args[]) {

ArrayList<Animal> zoo = new ArrayList<Animal>();
zoo.add(new Animal());
zoo.add(new Bird());
zoo.add(new Cow());
zoo.add(new Bear());
zoo.add(new Duck());
generateCacophony(zoo);

}

private static void generateCacophony(ArrayList<Animal> animals) {
for (Animal a: animals) {

a.makeNoise();
a.move(3);
System.out.println();

}
}

Figure 12.2: The Zoo program.

12.1. POLYMORPHISM 189

The output of the program, as you can easily verify, is:

Growl!
tramp tramp tramp

Chirp
Flap

Mooooo
tramp tramp tramp

Growl!
tramp tramp tramp

Quack
Flap

Lots of top-down inheritance here. Notice that the Bear class is
completely unchanged from its superclass: evidently, the generic
animal behavior works fine for bears, at least as far as moving and
making noise goes. This is not an error.

You also may have noticed that the Bird’s .move() method com-
pletely ignores its distance argument. That, too, is not a problem.

Finally, and most importantly, note that the Duck class does not
override .move(), but its superclass (Bird) does, and so a Duck will
“Flap” like ordinary Birds do. The rule is: when a method is called
on an object, the code in its class is called, unless the class doesn’t
define that method. In that case, Java looks for the method in its
immediate superclass, then its superclass’s superclass, etc. all the
way up the inheritance hierarchy, calling the first one it finds. This
makes sense: since a Duck is-a Bird, it is sensible to make it move
like a Bird rather than like a generic Animal.

12.1 Polymorphism

This technique goes by a funny name, by the way: polymorphism.
It’s one of those geeky-sounding words useful for slinging at parties
when you want an annoying person to move away from you.

190 CHAPTER 12. INHERITANCE (2 OF 2)

I define polymorphism (specifically, “subtype polymorphism,” which
is what we’re dealing with here) as transparently treating objects
differently based on their type. The word “transparently” means
“without the programmer having to worry about it.”

Essentially, polymorphism is another way to think about top-down
inheritance. We have a generic set of operations (like “move” and
“make noise”), each of which can be personalized in custom ways by
specific subclasses, but which clients can simply call at the desired
times without having to be aware of those subclasses. “The right
thing” simply happens based on the object’s type, without the pro-
grammer having to resort to a giant chain of if/else statements or
some other monstrosity. This is because the language itself auto-
matically dispatches the method call to the correct code.

In terms of the concrete zoo example, polymorphism basically says:
“the way you direct any animal to make noise is the same: telling
a duck to make noise uses the exact same code as telling a cow to
make noise. Yet different things happen in each case, because of
how Java enables the subtype-customization to take place."

instanceof is evil

It may help you understand this if I contrast it with a non-example
of polymorphism.

Suppose we have a Pokemon class, instances of which represent var-
ious fictional fighting critters and their moves and stats. We also
have a Power class used to represent a particular superpower like
“thunder shock” or “hyperbeam.” Each special type of power will
be its own subclass of Power, in true object-oriented inheritance
style. And for this simple example, we’ll say that each Pokemon has
just one “primary power” that it can use in combat. Whenever a
Pokemon object’s .attack() method is called, it will use its primary
power on the foe it is passed.

Figure 12.3 shows the WRONG way to code this. The .attack()
method itself, in the Pokemon class, is scrutinizing its primaryPower
object, figuring out what subclass it is and responding appropri-
ately. You can see the (evil) Java instanceof operator in use here.

12.1. POLYMORPHISM 191

It is a way of determining at run-time whether or not an object is
of a particular class. Using instanceof is almost always bad
programming practice since it violates encapsulation, reduces
modularity, and eschews polymorphism. Among other things, this
design creates a gigantic (and ever-growing, as more powers are
added to the program) if/else chain to do the work that Java
already does automatically. And that huge type-checking mech-
anism, besides being unwieldy and error-prone, is plopped right
inside the Pokemon class, which is not the right place for it. (That
code concerns various types of powers, not Pokémon.)

public class Pokemon {

private Power primaryPower;

public void attack(Pokemon foe) {
if (primaryPower instanceof Thundershock) {

// do the "thundershock" stuff to the foe
}
else if (primaryPower instanceof RoarOfTime) {

// do the "roar of time" stuff to the foe
}
else if ...

}
}

public class Power {
...

}

public class Thundershock extends Power {
...

}

public class RoarOfTime extends Power {
...

}

Figure 12.3: The WRONG way to implement Pokémon powers, using the
instanceof operator.

192 CHAPTER 12. INHERITANCE (2 OF 2)

Figure 12.4, on the other hand, shows a good, healthy, proper OO
design for the Pokémon model. None of that if/else junk is even
necessary, and the Pokemon’s .attack() method becomes a one-
liner, as it should be. Java will automatically call the proper “thun-
der shock” code, “roar of time” code, “hyperbeam” code, or what-
ever, without us having to try to do its work for it. And adding a
new Power is just a matter of creating a new, encapsulated subclass,
with its own .useAgainst() code. Neither the Power superclass nor
the Pokemon class need be disturbed by this addition. It all works
seamlessly.

public class Pokemon {

private Power primaryPower;

public void attack(Pokemon foe) {
this.primaryPower.useAgainst(foe);

}
}

public class Power {
public void useAgainst(Pokemon foe) {

// use the basic, default power on the foe
}

}

public class Thundershock extends Power {
public void useAgainst(Pokemon foe) {

// do the "thundershock" stuff to the foe
}

}

public class RoarOfTime extends Power {
public void useAgainst(Pokemon foe) {

// do the "roar of time" stuff to the foe
}

}

Figure 12.4: The right way to implement Pokémon powers, using subtype
polymorphism.

12.2. GETTING ABSTRACT 193

12.2 Getting abstract

Abstract methods

Okay, back to the Zoo example from p. 187. For each type of animal,
it was up to the subclass to decide whether to override a method or
not. If the subclass was happy with the base class’s behavior (like
Cow was with .move(), or Bear was with everything) it could just
ignore that method and default to ordinary animal behavior.

What if we had a method, though, where there was no reasonable
default behavior to define? Let’s add a method .getNumChromosomes()
which will return the number of DNA molecules in that species. Un-
like making noise, which we might plausibly say is “growling, unless
further specified for a particular animal,” perhaps there isn’t any
“default number of chromosomes” that makes sense.1

Note that we still want to be able to call .getNumChromosomes()
on any Animal, no matter what type. So it’s no good to just leave
the method out of the Animal class and only define it on subclasses.

The solution to our dilemma is to make .getNumChromosomes() an
abstract method. “Abstract” means that even though it’s defined
in a superclass – with a name, parameter list, and return type –
there’s not actually any code for it there! Here’s what it looks like:

class Animal { // (not finished yet...)
abstract public int getNumChromosomes();
...

}

It looks a little strange, with a semicolon prematurely truncating
the method signature. But by doing this, we’re declaring that even
though there’s no method body for .getNumChromosomes() in the
Animal class, we still want to be able to call it on an Animal. Indi-
vidual subclasses provide their own implementation; for example:

1Consider: a fruit fly has only 8 chromosomes, while a tasmanian devil has
14, a human has 46, a potato 48, a silkworm 56, and a catfish 104. Given these
examples, what default value would have any merit?

194 CHAPTER 12. INHERITANCE (2 OF 2)

class Cow extends Animal {
public int getNumChromosomes() {

return 60;
}
...

}

Notice that the subclasses do not include the keyword abstract on
the method.

Abstract classes

Now I know what you’re thinking. “This is all fine, but what if we
have a plain-old-Animal object and call .getNumChromosomes() on
it?”

Cow c = new Cow();
int numc = c.getNumChromosomes(); <-- returns 60
Animal a = new Animal();
int numa = a.getNumChromosomes(); <-- ???

There’s no code to run for a generic Animal, so what value would
we get back?

This is indeed a dilemma, and Java solves it in the only sensible
way: it says you can’t make a plain-old-Animal anymore. The rule
is: if any method of a class is abstract, the class itself must be
abstract, which means it is un-instantiatable. In other words, the
Java compiler forces us to amend our Animal class as follows:

12.2. GETTING ABSTRACT 195

abstract class Animal {
public void makeNoise() {

System.out.println("Growl!");
}

public void move(int distance) {
for (int i=0; i<distance; i++) {

System.out.print("tramp ");
}
System.out.println();

}

abstract public int getNumChromosomes();
}

If we ever try to write the code “new Animal()”, Java will (rightly)
stop us with a compilation error.

Animal.java:5: error: Animal is abstract; cannot be instantiated
new Animal();
^

1 error

Note that every instantiatable subclass needs to be non-abstract,
and therefore it must have a body for every one of its methods,
defined in either itself or in one of its superclasses. For exam-
ple, as soon as we add the abstract .getNumChromosomes(), our
Cow.java suddenly won’t compile either:

Cow.java:4: error: Cow is not abstract and does not override abstract
method getNumChromosomes() in Animal

class Cow extends Animal {}
^

1 error

So we’ll need to define .getNumChromosomes() in Cow and Bear (or
else make them abstract). What about Duck and Bird? It depends
on which of these classes (if either) we want to be abstract. If we

196 CHAPTER 12. INHERITANCE (2 OF 2)

want to be able to “new Bird()” and also “new Duck()”, then at
least Bird will have to provide a .getNumChromosomes() method.
(And Duck’s would be optional. If in fact Ducks have a different
number of chromosomes than ordinary Birds, we’d want to also
make one on the Duck class.) If, on the other hand, we’re happy for
Bird to be abstract (and thus un-instantiatable), we could choose
to define it only on Duck and call it a day. It all depends on what
makes sense for the domain.

Putting all this abstract stuff together, here are the rules:

1. A class cannot be instantiated if it’s declared abstract. (Only
its subclasses possibly can be.)

2. If there is any abstract method on a class, the class itself
must be declared abstract.

3. If a class A inherits from some other class B, and B has abstract
method(s) on it, A must provide implementation(s) for all of
those methods, or else A be declared abstract as well.

UML notation

There are two different ways to mark a method or class as abstract
in UML. One is to put the name of the method or class in italics.
That works well if you’re using a design tool like ArgoUML or
Rationale Rose to create your diagrams. Otherwise, if you’re doing
it by hand, you add a (“≪abstract≫”) stereotype. I’ve shown both
approaches in Figure 12.5.

12.3 That’s just super

Calling a superclass’s methods with “super.”

Occasionally, it will make sense for a method in a class to explicitly
call a method in its superclass. For instance, suppose we said,
“When asked to make noise, a Duck should ‘Quack’ but then also
do whatever ordinary Birds usually do.” We would write that as
follows:

12.3. THAT’S JUST SUPER 197

Figure 12.5: Using italics, and the ≪abstract≫ stereotype, to indicate
abstract classes and methods.

class Duck extends Bird {
public void makeNoise() {

System.out.println("Quack");
super.makeNoise();

}
}

The “super.” prefix (pronounced “super dot”) says to call the ver-
sion of .makeNoise() that’s defined in the Bird class, not the Duck
one. (And a good thing, too: otherwise we’d have an infinite loop
with .makeNoise() repeatedly calling itself!) Written this way, a
Duck will make this noise:

Quack
Chirp

As another example, we might define a class Chipmunk that moves
twice as rapidly as normal animals. If we defined its .move()
method thus:

class Chipmunk extends Animal {
public void move(int distance) {

int doubleDist = distance * 2;
super.move(doubleDist);

}
}

198 CHAPTER 12. INHERITANCE (2 OF 2)

then calling .move(3) on a Chipmunk object would print this:

tramp tramp tramp tramp tramp tramp

By the way, students often have a question here, and maybe you
do too. They ask whether they can call super.super.move() to
invoke the “grandparent’s method.” The answer is no, for reasons
having to do with encapsulation. It’s fine for a Duck to know it’s
a subclass of Bird, but it shouldn’t know what Bird’s superclass
is, nor even that Bird has a superclass. That knowledge (which we
would be baking in to our program through a “super.super.” call)
is outside the realm of the Duck class, and therefore should not be
known to it. If later, for instance, we refactor our code and make
Bird its own class instead of inheriting from Animal, Duck would
break if it had a “super.super.”.

Invoking a superclass’s constructor with “super” (no dot)

You’ve known ever since p. 40 that whenever an object is instanti-
ated, one of that class’s constructors is called. This is indeed the
case, but here’s a new wrinkle: when an object is instantiated, a
constructor in its superclass is also called. This is because in order
to “set up” the Duck stuff (initialize its inst vars, etc.), we also need
to set up its Bird stuff, and for that matter its Animal stuff. Since
a Duck is-a Bird, which in turn is-a Animal, it’s imperative that we
have a valid Animal object before trying to make it a special kind of
Animal (and similarly, a valid Bird before we make a special kind
of Bird).

This usually happens automatically, but can need some special
coaxing if you’re passing arguments to constructors. An exam-
ple is the code snippet in Figure 12.6 (whose class diagram is in
Figure 12.7). Here, the only constructor for the Person class is one
that takes a String argument; hence, we must pass it a String
if we want to instantiate one. In the Student constructor (which
takes a couple arguments of its own) we call “super(name)” which
passes the name the subclass was given and passes it up to its su-
perclass’s constructor. In the Prof constructor, we take a "Dr. "

12.3. THAT’S JUST SUPER 199

on to the front of the name before passing it the superclass. Note
that there’s no “dot” after these super()s; that’s how we indicate
we want to call the constructor, rather than an ordinary method.

Somewhat weirdly, in Java the call to super() must be the first
line of the constructor. That’s because Java says, “a Student is a
special type of Person. So if you want to be a Student, you have
to first be a fully-baked Person. Only then will we get around to
the Student-specific stuff.” (Note this restriction does not apply to
“super.” (“super dot”) method calls; they can be put anywhere.)

class Person {
private String name;
protected Person(String n) { class Prof extends Person {

this.name = n; private String dept;
} Prof(String n, String d) {

} super("Dr. " + n);
this.dept = d;

class Student extends Person { }
private double gpa; }
private int year;
Student(String name, int year) {

super(name);
this.gpa = 0.0;
this.year = 1; // Freshman

}
}

Figure 12.6: The interaction between constructors when inheriting.

One other thing on this Person/Prof/Student example: we have
defined the Person constructor to have protected visibility. As
you may recall from Figure 6.11 on p. 106, protected visibility
(denoted in UML with a hashtag) means that it can only be called
by a class in the same package or a subclass. It’s useful in situa-
tions like this that involve inheritance: by making the Person con-
structor protected, we’re saying that no one outside the package
can instantiate a plain-old Person: instead they must instantiate a
subtype, which can then call the constructor from below. This is
related, but not quite the same, as declaring a method abstract.
(The difference being that abstract classes can’t be instantiated
anywhere, even in the same package.)

200 CHAPTER 12. INHERITANCE (2 OF 2)

Figure 12.7: The class diagram for Figure 12.6.

12.4 Pure abstraction: Java interfaces

We’ve now seen several examples of superclasses. Sometimes they
have all concrete (opposite of abstract) methods, and a subclass
can pick and choose which ones it wants to override. Sometimes,
they have one or more abstract methods, which the subclass must
override, or else be un-instantiatable.

What if we push that idea all the way in the abstract direction: a
“pure” abstract class, with only abstract methods? Is that any use?

Yes, and probably more than you realize right now. I’ll get to the
reasons this is so powerful in a page or two, but for now let’s just
learn the syntax. In Java, instead of a pure abstract class, you can
create something called an interface, which is essentially the same
thing but which gives considerable more flexibility. An interface is a
template of sorts, with no instance variables and no method bodies.
Classes that implement an interface promise to create a method
body for each of the methods in the interface.

In UML (see Figure 12.8), an interface looks almost exactly like a
class. The only differences are: (1) there are (sometimes2) only two
compartments instead of three, and (2) the stereotype≪interface≫
appears in the name box (recall “stereotypes” from p. 92).

We indicate “implements an interface” with a dashed line that oth-
erwise looks exactly like an inheritance arrow (recall Figure 11.5

2Designers aren’t consistent about this, I’ve found. Some do include all
three compartments for an interface, even though the middle one must by def-
inition be empty.

12.4. PURE ABSTRACTION: JAVA INTERFACES 201

Figure 12.8: Two classes that implement interfaces.

from p. 174).

In Figure 12.8, both of the classes in our racers application need
to store and load objects from the database. Hence, both of them
implement the Storable interface, which defines two methods, one
for storing and one for loading. The code for that much would look
like:

interface Storable {
void store(DBConn c);
void load(DBConn c);

}

class Race implements Storable { class Runner implements Storable {
private Date date; private String name;
private String loc; private String gender;
private int maxRunners; public void store(DBConn c) {
public void store(DBConn c) { ...

... }
} public void load(DBConn c) {
public void load(DBConn c) { ...

... }
} }

}

Some Java syntax idiosyncrasies: an interface has only method
signatures (return type, method name, parameter lists) followed by
a semicolon, just as with abstract methods. However, the methods
are not marked as abstract, nor public nor anything else. Note
also that we don’t say the class “extends” the interface, but rather
“implements” it.

202 CHAPTER 12. INHERITANCE (2 OF 2)

In the same figure, we have Runner also implementing another in-
terface: Participant. Presumably there are also other types of
participants (volunteers, walkers, wheelchair racers, walkers, rock
bands that play on the sidewalks) that can .register() for races,
and if they want to be able to participate, their classes must imple-
ment this one-method interface. We augment the code as follows:

interface Participant {
int registerFor(Race r);

}

class Runner implements Storable, Participant {
private String name;
private String gender;
public void store(DBConn c) {

...
}
public void load(DBConn c) {

...
}
int registerFor(Race r) {

...
}

}

Take note of the fact that the Runner class definition has two
interface names in its declaration line, separated by a comma.

And that takes us, at last, to the reason Java interfaces matter:
because a class can implement more than one of them.

You might be thinking, “okay, but couldn’t we just have inherited
from more than one abstract class, and accomplished the same thing
without this new ‘interface’ notion?” The answer is no: Java does
not allow multiple inheritance, which is when a class has more
than one superclass. The reasons are somewhat lengthy to explain,
and will be omitted here, but suffice to say that languages that
choose to support multiple inheritance (C++ is among them) have
some knotty problems to solve. For instance, what if class A inherits
from both B and C, and both B and C have their own .doThis()
method. What code, then, would this line trigger?

12.4. PURE ABSTRACTION: JAVA INTERFACES 203

A a = new A();
a.doThis(); <-- ? Whose "doThis()"?

How can it choose between B’s and C’s perfectly acceptable imple-
mentations of .doThis()? Or should it run both of them, and if so
in what order?

James Gosling and the other designers of Java took a look at this
problem and decided that multiple inheritance wasn’t worth the
hassle. I happen to think they were right, and for one simple reason:
although programmers often want to use multiple top-down inheri-
tance, they rarely want to use multiple bottom-up inheritance. And
it’s the latter that gives rise to all the paradoxes and strange corner
cases. As long as a class simply wants to masquerade as one of sev-
eral different things (as opposed to wanting to steal method imple-
mentations and inst vars from more than one superclass), “multiple
inheritance” turns out not to be a big deal. One of Java’s big wins
was allowing multiple interfaces to be implemented, not multiple
classes to be inherited from, thereby sidestepping the whole issue.

So the bottom line is that in Java, a class can inherit from only one
class, but it can implement as many interfaces as it likes. If you do
both, you declare yourself like this:

class Runner extends Athlete implements Participant, Storable {
...

}

Put another way, you only have one inheritance relationship to
“spend,” so use it wisely. Only inherit from something if it truly is
an “is-a” relationship, and there’s meaningful code you get to reuse
by so doing.

Example: java.lang.Comparable

Here’s an example of the kind of thing that interfaces make easy.
Recall our ReservationSystem example from section 10.3 (on p. 160).

204 CHAPTER 12. INHERITANCE (2 OF 2)

We had a class called Resort that represented high-falutin’ vaca-
tion destinations. It had inst vars like name, desc, phone, rating
(from 1 to 5 stars) and cost (from $ to $$$$).

We also sketched a ReservationSystem class that would travel
agents to browse available rooms, book hotels for customers, etc.
We’ll use a has-a relationship for that (see Figure 12.9).

Now one of the things ReservationSystem is likely to want to
do is sort the Resort objects in its list. There’s a function in
java.util.Collections class called sort() that does just that,
in fact. We’d like to write code like this:

class ReservationSystem {
private ArrayList<Resort> resorts;
...
private void printAvailableResorts() {

// Determine availability...

java.util.Collections.sort(resorts);

// Print results...
}

}

Figure 12.9: Using the Comparable interface to enable sorting.

The trouble is, even though Collections has an efficient, bug-free
sorting algorithm all coded up for us to use, it doesn’t know what

12.4. PURE ABSTRACTION: JAVA INTERFACES 205

“sorted” means for Resorts. For a list of integers, we’d expect
“sorted” to mean “in numerical order.” For Strings, we’d expect
alphabetical order. But what about Resorts?

It turns out that Collections.sort() works for any collection of
objects that implement the Comparable interface from java.lang.
That interface has just one method, .compareTo(), which compares
the object it’s called on with another object. The specification says
it should return a negative number if this should come before the
argument in sorted order, and a positive number if the argument
should come first.

Let’s say we want to sort our Resorts alphabetically by name. Then
we could just write:

class Resort implements Comparable<Resort> {
private String name, desc, phone;
private int rating, cost;
...
public int compareTo(Resort r) {

return this.name.compareTo(r.name);
}

}

It’s a weird-looking one-liner, but what this .compareTo() imple-
mentation does is pass the buck to its name field. It says, in effect,
“if you want to know whether I come before or after the resort r,
just look at whether my name comes before or after r’s name alpha-
betically.”

Or, perhaps I want to sort by decreasing rating (5 stars first, 1 star
last). Then I could write:

class Resort implements Comparable<Resort> {
private String name, desc, phone;
private int rating, cost;
...
public int compareTo(Resort r) {

return r.rating - this.rating;
}

}

206 CHAPTER 12. INHERITANCE (2 OF 2)

Now, if I’m a 4-star hotel and r is a 2-star hotel, r.rating -
this.rating will be a negative number, putting me first.

You could detect equal ratings and break the tie by the cost, or
sort by phone number, reverse length of description, or anything
else you dream up. The magic here is that we decoupled the sort-
ing algorithm from the details of how objects are compared. The
Collections.sort() method is perfectly happy as long as we keep
our promise to implement Comparable and provide a way to com-
pare two Resort objects.

12.5 java.lang.Object

One other difference between C++ and Java is that Java has a
single-rooted inheritance hierarchy. This means that in Java,
if you trace any class’s ancestry up from superclass to superclass,
you eventually reach a common point. That point is called the
Object class from the java.lang package. All classes, regardless
of who wrote them, are ultimately subtypes of Object.

It doesn’t seem that way when we look at the code, since we
saw “class Bear extends Animal” yet “class Animal...(extends
nothing, presumably)”. But if you don’t explicitly list a subtype
via extends, Java implicitly substitutes Object as the superclass.

This has a couple of nice benefits. For one, there are methods on
the Object class that all objects are therefore guaranteed to inherit;
among them are .equals() and .toString(). For another, it is
possible to treat all objects indistinguishably in certain contexts.
We saw this with the pre-generic collection classes like ArrayList.
The reason we can have a plain ArrayList hold absolutely anything
– say, two Strings, three Ballplayers and a Duck – is that the list
is treating them all as the ultimate supertype (Object), in true top-
down inheritance fashion. In C++ there isn’t really any way to do
that, since if you have two classes that don’t explicitly inherit from
a common type, then as Steely Dan says, they simply “got nothing
in common.”

Chapter 13

The Factory pattern

Now that we’ve covered inheritance, we’re in a position to under-
stand the next simple-yet-ubiquitous design pattern, called Fac-
tory. It’s a pretty easy one to grasp. Simply put, a factory is a
class whose purpose is to instantiate objects.

Up to now, we’ve used the new operator directly in order to instan-
tiate. If we want a new Ballplayer object, we new one up:

Ballplayer joe = new Ballplayer("Dimaggio","OF");

We’re now going to outsource this instantiation process to a spe-
cial class called a BallplayerFactory. It’ll seem like unnecessary
wiring at first, but there are advantages that come to light when
the instantiation process is more complicated. Our new line of code
will be this:

Ballplayer joe =
BallplayerFactory.instance().create("Dimaggio","OF");

The sharp-eyed reader will see the .instance() and wonder if this
is using the Singleton pattern. The answer is yes! In fact, factories
are nearly always singletons. This is simply because although our
baseball simulator will create lots of Ballplayers, it will only need
one BallplayerFactory.1

1As with all design patterns, you should use standard nomenclature. If the

207

208 CHAPTER 13. THE FACTORY PATTERN

Patterns interleave and play off one another all the time. Here, we
have a factory class that uses the classic Singleton pattern:

class BallplayerFactory {

private static BallplayerFactory theInstance;

public static synchronized BallplayerFactory instance() {
if (theInstance == null) {

theInstance = new BallplayerFactory();
}
return theInstance;

}

private BallplayerFactory() {
}

public Ballplayer create(String name, String position) {
return new Ballplayer(name, position);

}
}

Badda-boom.

Now I know what you’re thinking. You’re thinking “wow, that’s a
whole lot of code to do nothing but “new up a Ballplayer,” which
we were doing before with one line of code and a lot less work.
What’s the point of all this?”

The answer is that oftentimes the code which needs to instantiate an
object isn’t aware of what specific subtype of object it needs. Read
that sentence again and let it sink in. This type of decoupling –
one part of the code that directs objects to do things without being
aware of subclasses, and a different part of the code that imple-
ments subtype-specific behavior – is one of the important benefits
a properly-designed object-oriented program can bring.

word “factory” seems clunky or contrived to you, I get it, but accept it as part
of the OOP culture and use it. Don’t try to come up with your own synonym of
“factory” (like “creator” or “instantiator”) and use that instead, since you’ll just
confuse your fellow programmers. The word “factory,” like the word “singleton,”
is baked into the software development community’s consciousness, and thus
serves as an excellent terse-yet-precise communication of purpose.

13.1. TOP-DOWN INHERITANCE 209

13.1 Top-down inheritance and the Factory pattern

This is in fact the launch point of top-down inheritance. We’ve
seen that with top-down inheritance, the client code can treat all
specific subtypes (like Cow, Duck, etc.) in exactly the same way – in
fact, it doesn’t even have to be aware that there are any subtypes.
To the client code, all that exists are Animals, and those objects
can be directed to move, make noise, or anything else.

That was all great, but one thing we didn’t address was “how do
those objects come into existence in the first place?” Somewhere the
specific subtype has to be mentioned in the code, or else there’s no
way to “new” it. How can we be blissfully ignorant of the subtypes
if we’re the one who has to instantiate them?

The answer is the Factory pattern. With it, we turn over control of
the actual instantiation to the factory class, rather than burdening
the client code with it.

Suppose that our simulator is more sophisticated than the origi-
nal toy example from Chapter 4. Different positions have differ-
ent kinds of stats: pitchers (with “koDominance”) are completely
different than position players (who have numHits and numAtBats
instead). It might make sense to use an inheritance hierarchy here
with subclasses of Ballplayer, as shown in Figure 13.1.

Our factory can now instantiate the right kind of Ballplayer when
it is asked to:

class BallplayerFactory {
...

public Ballplayer create(String name, String position) {
if (position.equals("P")) {

return new Pitcher(name);
} else {

return new PositionPlayer(name, position);
}

}
}

210 CHAPTER 13. THE FACTORY PATTERN

class Ballplayer {
protected String name;
private int uni;
private int salary;
private String handedness; // "L" or "R"

public abstract double estimatedMarketValue();
}

class Pitcher extends Ballplayer {
private double koDominance;
private int numKos;

public Pitcher(String name) { this.name = name; }
public double estimatedMarketValue() {

return koDominance * 20000000;
}

}

class PositionPlayer extends Ballplayer {
private String position;
private int numHits;
private int numAtBats;

public PositionPlayer(String name, String pos) {
this.name = name;
this.position = pos;

}
public double estimatedMarketValue() {

return numHits * 100000 - numAtBats * 1000;
}

}

Figure 13.1: A small inheritance hierarchy for baseball players.

Depending on the position (“P” for pitcher, “OF” for outfielder, etc.)
the factory instantiates the proper subtype of Ballplayer and re-
turns it. The client code doesn’t need to know anything about
those subtypes. Notice that the return value of .create() is the
general type Ballplayer, not any of the specific types. If we later
add additional subclasses, only the factory class has to be updated,
not the code that (unknowingly) uses them.

13.2. RANDOM TYPE GENERATION 211

Figure 13.2: The factory pattern in a randomly-generated setting.

13.2 Random type generation

In games and simulations, it’s common to instantiate objects ac-
cording to some random pattern, rather than specifying each type
of object deterministically.

Imagine a fantasy-genre videogame in which the player acts as a
swordsman or Valkyrie and wanders through dungeon levels looking
for monsters to slay. We might have a MonsterFactory class to
generate monsters as they are encountered. Maybe on the first
(and easiest) level of the game, half of the monsters we create are
Goblins and the other half are TempleGuards. And both of these
have “easy” statistics – i.e., low values for hitPoints, armorClass,
and speed. When the player gets to level two, however, not only will
the stats of these basic creatures get buffed, but now an occasional
Vampire will enter the mix.

The Factory pattern makes this easy. All we need to do is encap-
sulate the functionality for creating monsters into the .create()
method, as shown in Figure 13.3. Then, whenever our program
needs to create a new bad guy, this line of code suffices:

Monster newMonster = MonsterFactory.instance().create();

When the player completes a level and is ready for the next chal-
lenge, our client code simply calls:

212 CHAPTER 13. THE FACTORY PATTERN

int currLevel = MonsterFactory.instance().getLevel();
MonsterFactory.instance().setLevel(currLevel + 1);

and away we go.

Hopefully you’re getting the gist, here: if the instantiation pro-
cess for an object is a bit complex, it makes sense to separate it
into its own class. This way, you don’t have to duplicate the logic
in separate places, and you don’t have to clutter your client code
with a giant switch or if-else construct right in the middle of
instantiating and using an object.

13.2. RANDOM TYPE GENERATION 213

class MonsterFactory {
private int level;
private java.util.Random rng;

...singleton stuff...

Monster create() {
Monster m = null;
switch (level) {

case 1:
double randomNumber = rng.nextDouble();
if (randomNumber < .5) {

m = new Goblin();
} else {

m = new TempleGuard();
}
m.setHitPoints(rng.nextInt(8));
m.setArmorClass(rng.nextInt(8));
m.setSpeed(rng.nextInt(5));
break;

case 2:
double randomNumber = rng.nextDouble();
if (randomNumber < .4) {

m = new Goblin();
} else if (randomNumber < .8) {

m = new TempleGuard();
} else {

m = new Vampire();
}
m.setHitPoints(rng.nextInt(8) + 5);
m.setArmorClass(rng.nextInt(8) + 4);
m.setSpeed(rng.nextInt(10));
break;

}
return m;

}
}

Figure 13.3: A factory to generate baddies randomly, based on the game’s
level. (Recall the java.util.Random class from Section 4.3 on p. 73.)

Chapter 14

Team software development

At some point in your career (perhaps now), you will begin to work
on projects that are too big for any one person to complete in an
acceptable amount of time. The solution, of course, is to work on
a team with other software developers. Working on a team brings
up a host of other issues, some technical and some social.

14.1 Looking deeper into git

Waaaay back in chapter 1 (p. 17) I briefly introduced the git ver-
sion control system. Hopefully you’ve been using it all along to do
the simple process of “committing” code to your repo in individual
snapshots. This is a habit you’ll want to continue to ingrain in
your cerebral cortex. Commits are the building blocks of any ver-
sion control system, including git; without them, you don’t have
anything to work with.

Now it’s time to learn a little more about git, and especially how
it works in a team environment.

Figure 14.1 shows the environment you’ve been using so far: a
single developer, with a single repo. I use the term workspace
to mean “the directory (and possibly subdirectories) in which the
developer’s files actually exist.” In Figure 14.1, the developer is
Filbert. His workspace is shown as a yellow oval, which matches the
ovals from way back in Figure 1.1 (p. 6) that represented ordinary

215

216 CHAPTER 14. TEAM SOFTWARE DEVELOPMENT

Linux directories. This yellow oval contains the “bleeding edge” of
what Filbert is working on: as soon as he saves any file from vim,
the file in that directory is instantly updated based on what he just
typed, warts and all.

Figure 14.1: A single developer’s repo and workspace.

Filbert’s personal git repo is shown as a green box. At this point,
you should view a repo as a sort of “mysterious” thing that somehow
maintains a record of all the previous changes to all the project’s
files, yet in a way you don’t need to understand. Using git com-
mands from the command line is the only way we will inspect and
command it.1

Also shown is a purple diamond called the staging area. Normally
you don’t think too hard about the purple diamond explicitly, but it
is there, and the command “git status” will only fully make sense
if you recognize its use. Essentially, the staging area is for changes
that the developer is “about to commit” (or “fixin’ to commit,”
as they sometimes say in the South) but hasn’t actually pulled
the trigger on yet. When you execute the two commands “git
add filename” and “git commit -m "My commit message"”, back
to back, the add puts a snapshot of the change to the staging area,
and commit actually records it in the repo. (If you’re in the habit
of using “git commit -a” to commit your files, it effectively does

1If you’re curious, it is maintained in a hidden directory called “.git” –
note the initial dot – inside the top-level directory of your workspace. If you
cd in there, you’ll see all kinds of crazy stuff under the hood. Do not modify
any of it, or you’ll probably break your repo and lose all its contents!

14.2. UNDERSTANDING GIT STATUS 217

both the add and the commit all in one step.)

Beware a common pitfall with “git commit -a”, though: it only
commits changes to existing files, not new files. If you create a
brand new .java file in your workspace, representing a new class,
you must explicitly “git add” it to your repo before committing
it. I can’t tell you how many times one of my colleagues (or myself
shame) has broken a build by committing all of their changes
except for the new files.

Anyway, just to repeat the basic instructions for reproducing Fig-
ure 14.1:

1. The command “mkdir someDirName” creates the workspace,
under whatever directory you’re currently in (which can be
seen via “pwd”).

2. The command “cd someDirectoryName” actually goes into that
directory (remember that mkdir alone does not change your
current directory).

3. The command “git init .” creates the green box and the
purple diamond.

4. You use “vim” to create files like Hairball.java and Cat.java
directly in your workspace (blue rectangles).

5. When you want to snapshot the current version of one of
your files, in anticipation of doing a commit, you type “git
add nameOfFile”. This adds the current contents to the purple
diamond. You can now proceed editing further, or go straight
to the commit.

6. To actually commit, type “git commit -m "My message"”.2

14.2 Understanding git status

Two extremely common commands for inspecting your workspace
are “git status” and “git log”. Let’s look at each in turn.

The git status command tells you the current state of your workspace

2Or, in place of steps 5 and 6, you can do the shortcut operation “git
commit -a -m "message"”, but only if all the files you’re changing were already
explicitly “git add”ed at some point.

218 CHAPTER 14. TEAM SOFTWARE DEVELOPMENT

as compared with your repo. The output will look like this:

$ git status
On branch main
Changes to be committed:

(use "git restore --staged <file>..." to unstage)
modified: Cat.java

Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)

modified: Cat.java

Untracked files:
(use "git add <file>..." to include in what will be committed)

Cat.class
Hairball.class
Hairball.java

Several things of interest here:

• The “On branch main” means you’re on the normal, default
code “trunk.” Later in your career, you’ll discover that you
sometimes want to create branches, which are independently
developed sequences of changes for some specific purpose.
They are normally brought back together and merged into
the trunk at a later time.

• The output lists Cat.java as a “change to be committed.”
This means that an updated version of Cat.java is in your
purple diamond. (Refer back to Figure 14.1.) If we were to
follow up this command with a “git commit”, that version of
Cat.java would be committed to the repo for posterity.

• Somewhat weirdly, the output shows Cat.java as being in the
“changes not staged for commit” section as well! What the
heck is going on here – is Cat.java going to be committed,
or not?

The answer to that question is “both.” When a file shows
up in both lists, it means there have been several different
changes to it, only some of which were present the last time

14.2. UNDERSTANDING GIT STATUS 219

a “git add” was performed, and which are therefore in the
purple diamond. Other changes to this same file were made
after the “git add”, and so they are in the yellow oval only.
In a moment, I’ll teach you how to find out which changes are
in which category. For now, just grasp the fact that the same
file can be in both sections of the “git status” output.

• The “untracked” files are the files in your workspace that git
doesn’t yet know about. Looking at this list is a good way
to avoid making the “oops I did a git commit -a but forgot
to add my new files” problem I mentioned earlier (p. 217). In
this case, Hairball.java is potentially such a file, and this
message reminds us that we may want to “git add” it. If we
don’t, our next commit will only have the (first set of) Cat
changes, not the Hairball changes.

• The other entries under “untracked” are compiled .class files,
not .java source files. Normally, we want those to be
untracked, and so it’s actually good that they’re not set
up as part of the commit. Some developers, however (my-
self included) find this message annoying. The way to fix it
is to create a (hidden) file in your project directory called
“.gitignore”. All files whose names match something in the
“.gitignore” file will be ignored entirely by git, and hence
not be mentioned in a cries-wolf warning message.

Here’s an example .gitignore file, which you can edit like
any other file in vim:

.gitignore
*.class

There are two lines. The first is a bit of a mind-blower: it’s
the name of the .gitignore file itself! By including the line
“.gitignore” in our .gitignore, we’re telling git to not do
version control on .gitignore itself. (Without that, we’ll
feel like we’re stuck in a Monty Python skit where we create
a .gitignore to avoid annoying warning messages, only for

220 CHAPTER 14. TEAM SOFTWARE DEVELOPMENT

the .gitignore file itself to cause another annoying warning
message.)

The second line says “also please ignore any file that ends with
.class”. Now, we know that anything that shows up in the
“untracked files” section of git status really is something to
think hard about.

• Finally, notice the helpful comments that “git status” pro-
vides: they’re great for telling you exactly how to change
things if necessary. For instance:

– If we decide we don’t want to check in that first set
of Cat.java changes after all, we run the command
“git restore --staged Cat.java” to remove it from
the purple diamond.

– If we want all our changes in Cat.java to be committed
(the old pre--git-add ones and the newer ones), we do
“git add Cat.java” which will update the purple dia-
mond’s copy to match the workspace.

– If we decide to actually ditch the Cat.java changes en-
tirely, the command is “git restore Cat.java” to dis-
card them.

14.3 Understanding git log

While git status is a detailed look at the present, “git log” is
a detailed look at the past. With it, we can see the time, author,
and description of every change that’s been made during our whole
project.

I personally find the default git log output pretty wordy. It uses
multiple lines per commit, which to me is TMI and fills up my
screen too quickly:

14.3. UNDERSTANDING GIT LOG 221

$ git log
commit 928ab4924f1c5ddd3b9e2a1c7b507b1b60cf745d
Author: Betty Lou <bettylou@umw.edu>
Date: 2021-11-03

Fix NPE bug caused by multiple hairballs.

commit 7813b199f40051df14b23a418bce37ccb51a986d
Author: Filbert <filbert@umw.edu>
Date: 2021-11-02

Add support for multiple, simultaneous hairballs.

commit bdb0fa3071a220bfaccb0d687046e73873a6381d
Author: Betty Lou <bettylou@umw.edu>
Date: 2021-10-21

Make most setters private.

commit e4471910b8d27c819e4e0df39804ab607cd16c5c
Author: Jezebel <jezebel@umw.edu>
Date: 2021-10-15

Add Cat.java, Hairball.java.

Notice that the entries are in reverse-chronological order (most re-
cent at the top), which is what you want to get used to. Each
five-line section represents one commit. The big hairy numbers
immediately after the word commit are called the commit’s hash.
That just means that every commit has a unique number, ran-
domly/automatically generated by git, so that you can unambigu-
ously refer to it. (More on why to do this in a moment.)

The Author and Date elements are self-explanatory, and the rest of
the text is the actual message that the developer typed when doing
the git commit.

It turns out that git provides a great deal of fine-grained control
over what this output looks like. (Right away, that tells you that
people look at git logs a lot and need them to be just the right
format to quickly cull maximum information from them.) I like

222 CHAPTER 14. TEAM SOFTWARE DEVELOPMENT

mine to be all on one line, and in color. To do this, I execute the
line:

$ git config format.pretty "(%h) %Cblue%an%Creset: %Cgreen%s %Creset(%ad)"

which looks bizarre, but there’s a method to its madness. Each one
of these control characters (starting with a “%”) specifies a certain
piece of information or formatting. The result, when I type git
log is this:

$ git log
(928ab49) Betty Lou: Fix NPE caused by multiple hairballs. (2021-11-03)
(7813b19) Filbert: Add support for simultaneous hairballs. (2021-11-02)
(bdb0fa3) Betty Lou: Make most setters private. (2021-10-21)
(e447191) Jezebel: Add Cat.java, Hairball.java. (2021-10-15)

Easier on the eyes, IMO. Run the command “man git config” to
see all the options. Btw, you may be wondering what good it does
to only list the first few characters of the commit hash. It turns
out that for most commands that use it, you only have to type the
first few characters anyway (just enough to guarantee uniqueness)
and the short version is waaaay easier to look at.

14.4 Comparing versions

A very common operation for a developer is to compare two versions
(of the code base, or of a single file) to see what changed between
them. Colloquially, comparing two versions of something is called
“doing a diff,” named after the Linux “diff” command. Here’s
my favorite way of comparing versions.

The vimdiff comparison tool

First, make these changes to your git profile3:
3By the way, any time you want to see all of your git configuration settings,

you can do so with the command “git config -e --global”. It will bring up
all your settings in a text file for you to browse in vim. You can even edit
this file directly to make changes to settings, although be very careful not to
mistype anything. Stuff can go haywire if you do!

14.4. COMPARING VERSIONS 223

Figure 14.2: Using “git difftool” when configured with “vimdiff”.

$ git config --global merge.tool vimdiff
$ git config --global diff.tool vimdiff
$ git config --global difftool.prompt false

This tells git to use the “vimdiff” tool to do side-by-side compar-
isons. Then, “git difftool” is your principal way of bringing up
a comparison. When you run it, you will get a somewhat strange-
looking window that seems to be running two copies of vim: one on
the left and one on the right. All your vim positioning commands
– h, j, k, l, the arrow keys, CTRL-U and CTRL-D, even search with
“/” – move the cursor around just as in normal vim. As you scroll
up or down, both panes will scroll together. The changes from one
version to another will appear in color so you can easily see what’s
changed between them. (Note that if there are long sequences of
lines that were unchanged, sometimes vimdiff “folds them up” so
that it’s easier to skip over them.)

Figure 14.2 shows what vimdiff looks like when you run it. Its
vertically-split pane shows two versions of the same file, with the
differences between the two in various colors. It is plain from the
figure that the differences between the two Cat.java versions are:

1. The JavaDoc class comment (see Chapter 18) has an extra
phrase.

2. A new “breed” inst var has been added.
3. A bug has been fixed by changing the “args[1]” in the for

loop to “args[0]”.

224 CHAPTER 14. TEAM SOFTWARE DEVELOPMENT

Super cool, and easy to see at a glance. Learn to use this often in
your debugging and other code base investigations.

Don’t attempt to use vimdiff to edit your file, though. If you’re
comparing two versions of a file and find a mistake, quit out of
vimdiff and enter plain-ol’ vim to fix it. (Incidentally, to quit
vimdiff you have to enter “:q” twice, once for each of the panes.
Sometimes it’s quicker to use the “:qa” (for “quit all”) sequence
instead.)

Specifying the versions to compare

Okay. So that’s how vimdiff (which is triggered from git difftool)
works in general. Now, how do you specify what versions of the files
you want to compare?

If you just type the command with no other arguments:

$ git difftool

you’ll be comparing your workspace (yellow oval) against your stag-
ing area (purple diamond). This shows you the things that you
have changed since your last git add. This is useful when asking,
“I’m about to do a commit...have I forgotten anything I meant to
include?”

If you add the “--staged” argument:

$ git difftool --staged

you’ll be comparing your staging area (purple diamond) with the
repo (green box). This is useful when asking, “if I do a commit right
now, exactly what changes will be recorded?”

Finally, to compare any two versions, include the first few letters
of the commit hash of each. For instance, this command:

$ git difftool bdb0fa3 7813b19

14.5. GOING BACK IN TIME 225

will examine the changes Filbert made when he added multi-hairball
support. (Refer to the commit hashes in the git log output,
p. 220.) The first hash identifies the commit Filbert was working
with when he began making changes (i.e., the one he started with),
and the second is the hash of the commit he himself made (the
one he ended with). This process gives us fine-grained resolution in
examining the past and identifying errors.

14.5 Going back in time

One of the big value-adds of using a sophisticated version-control
system like git is the ability to “go back in time.” This actually
involves two superpowers: (1) to see the contents of previous ver-
sions of your code base, and (2) to permanently revert to those old
contents (undoing recent commits). We’ll cover each one.

Looking at old versions

There are a couple of ways to do this, but let me show you just
the most straightforward one. First, before you can look at a past
version of your repo, make sure your workspace is clean. The eas-
iest way to do that is simply to commit your current changes (al-
though using the “git stash” command mentioned in the footnote
on p. 234 is an alternative). If you want to go back in time right
now, then first go commit your changes, and make sure that git
status reports “working tree clean” before coming back here.

author waits while reader commits his/her changes

Okay, now that your workspace is clean, run a git log. Each
entry shows a commit you’ve made in the past (with a helpful com-
ment). Your job now is to figure out which version of your past you
want to (temporarily) return to. Don’t worry, this process is non-
destructive! You will absolutely be able to return to the present
any time you want to.

Once you’ve figured out which old version you want to explore,
make a note of the first few characters of its commit hash. Then,
type “git checkout” followed by those characters, and press Enter.

226 CHAPTER 14. TEAM SOFTWARE DEVELOPMENT

For instance, if I wanted to revisit life as it existed when Betty Lou
made her “Make most setters private” commit (see p. 220), I
would type:

$ git checkout bdb0f

Typing four or five characters of the hash is almost always enough.
(If it’s not, git will warn you to type more.)

All right: go for it.

reader time travels

Congratulations, you have now time-traveled to the past. As a
bonus, you will encounter arguably the funniest command-line mes-
sage I’ve ever seen:

You are in a 'detached HEAD' state.

Lol! Talk about scaring somebody away from command-line tools!
Detached heads are normally only good for zombies.

Anyway, you may now explore the previous version of your world.
Do an “ls” command, browse files with vim, make copies of any-
thing you’d like, and so forth. You will see that the state of your
workspace is exactly how it was at that point in the past. If you do
a git log right now, you’ll see that everything that occurred after
the point in the past you teleported back to is now missing from
the list.

When you’re done reminiscing, and want to return to the present,
simply type:

$ git checkout main

and you’ll be back in the present day.4

4Older versions of git called the main branch “master” instead of “main.”
If you try the above command and it doesn’t work, don’t panic: try “git
checkout master” instead.

14.5. GOING BACK IN TIME 227

Reverting to old versions

Everybody makes mistakes. And sometimes you want to do more
than just look at the older versions of your files – you actually
want to revert back to them permanently. You may realize that
something you tried (“it seemed like a good idea at the time!”)
actually isn’t working out, and you want to go back to the way
things were and pursue a different path.

The good news: git is made for this. The neutral news: there’s
more than one way to do it, so you do have to think.

No matter which way you do it, the first step is to clean your
workspace – make sure all your current changes are committed.
This may seem counterintuitive, since after all you’re abandoning
your current efforts, right? Why commit them? Just trust me.
This reverting operation is non-destructive, in the sense that if you
change your mind again later, you can always come back to the
future and resume the path you once abandoned. (If you’re really
really sure that your current changes are forever garbage, then you
can clean your workspace with git restore (see p. 220) instead of
git commit.)

Okay, now the choices. I’ll give you a couple of the most common
ones: git reset and git revert.

• Option #1: git reset. This tells git: “I want to teleport
back in time and continue life from a previous version of
myself.” (Warning : don’t use this option if you’ve already
pushed some of the commits that you’re undoing to your team
repo! (see next section.))

First, use the git log to locate the version you want to go back
to, as described in the previous section. Make a note of the
first few characters of the commit hash. (For example, 2fe3.)
Once you’ve done that, run this command:

$ git reset --hard 2fe3

substituting your own commit hash, of course. You have now
gone “permanently” back in time, and can continue your work
from the previous state. If you do a git log right now, none

228 CHAPTER 14. TEAM SOFTWARE DEVELOPMENT

of the future commits will even appear. If you ever change
your mind and want to go back to the future after all, you
can find the commit hash of the future commit using:

$ git log --reflog

and then do another “git reset –hard” with that future
commit hash.

• Option #2: git revert. This tells git: “One of my (or our)
previous commits was a mistake. Please undo those changes,
but leave me here in the (revised) future.”

First, use the git log to locate the offending commit. Make
a note of the first few characters of the commit hash. (For
example, b6b7.) Once you’ve done that, run this command:

$ git revert b6b7

substituting your own commit hash, of course. This opera-
tion creates a new commit to represent “the undoing of the
offending commit’s changes,” and hence you’ll be prompted
for a commit message. You can accept the default or type
a more descriptive one, and then voilà, the effect of the bad
commit’s changes will be canceled, and you can carry on.

There are other options too, which I encourage you to Google. The
important point is to think through exactly what it is you want to
do, so you can make sure that the command you choose applies to
your situation. I’ve used both of the above options (and others)
numerous times, depending on my scenario.

14.6. TEAM-BASED VERSION CONTROL WITH GIT 229

14.6 Team-based version control with git

In a team environment, the git tool works much the same way, but
with an added level of complexity to “join” the developers together.
Look at the revised picture in Figure 14.3.

Figure 14.3: A development team’s repos and workspaces.

We now have two developers working on this feline program: Fil-
bert and his colleague Betty Lou. The picture is considerably more
complex. First, notice that the three large salmon-colored squares
represent different machines which communicate only over the In-
ternet. Filbert and Betty Lou each have their own laptop to do de-
velopment on. And in addition, there is a third machine involved:
a publicly-available hosting service like BitBucket, SourceForge, or
github. Think of this public repo as the team’s “home base”: despite
the fact that at any given moment Filbert and Betty Lou may be
writing new code for the project, the latest stable version is always
available in the repo.

230 CHAPTER 14. TEAM SOFTWARE DEVELOPMENT

There are also some new git verbs we need to learn about to make
this picture work. To wit:

• git clone: Normally, the way this whole process kicks off is
that someone creates the initial version of the repo on github,
and the other team members clone copies of it. “Clone” is
exactly what it sounds like: it means to make an exact dupli-
cate.

github makes it easy to do this in a variety of ways. Per-
haps the most common is when one developer starts with an
embryonic version of the code base, creates his/her own local
git repo, and then “pushes” (see below) this to a new github
project. It’s also possible to start on github with a brand-new
blank project. At the time of this writing, a very helpful and
obvious green “New” button is present on the github main
account screen, with instructions to follow for each of these
different starting techniques.5

On the github project page, you’ll see a button that says
“Clone or download,” and which will display a specific URL
to your project if you click on it. Then, on your local machine,
you can go to the directory you want to be the parent of your
project, and type something like:

$ git clone https://github.com/stuff/projectName.git projectName

which will populate your filesystem with a copy of all the
repo’s files.

• git push: As usual, you’ll constantly be making your own
local commits to your own copy of the repo as you work. You
should do this every time you reach a stopping point.

5Services like github and BitBucket are free to use, by the way, as long as
you keep your repo public and visible to the world. The idea is that they’re
trying to promote open source software, so in exchange for sharing your ideas,
they’re giving you free storage space and tools. Some services even have free pri-
vate repos – after being purchased by Microsoft, github now offers this feature
for teams with three or fewer developers.

14.6. TEAM-BASED VERSION CONTROL WITH GIT 231

A new operation in the team environment is the “git push”.
It says “take the updated contents of my own local repo (which
have already been committed) and propagate them up to the
team repo in github.” This is how you share your changes
with your teammates.

Rule of thumb: making a local commit should be a common
operation. Doing a push, on the other hand, is rarer: you
only do it when your teammates need your latest code, and
when your code is stable enough to warrant making it “the
new normal” in the team repo.

Last thing on git push: you normally don’t do a push until
after doing a pull to make sure you have your teammate’s
latest code integrated in yours. See next bullet.

• git pull: The inverse process of push is pull. It means,
“go to github, fetch whatever changes have been made by my
fellow developers, and integrate them into my repo so I have
the latest and greatest.”

Now here’s where git is fancy, and dare I say, seemingly
magic. Suppose you’ve been editing code for the project at the
same time your teammates are, and furthermore you’re actu-
ally editing the same files. Doesn’t that seem like it would be a
nightmare? Doesn’t it seem like you would each be making in-
compatible changes, and that one person’s work is ultimately
doomed to be wiped out by the other person’s changes?

That fear is indeed true if you’re thinking of your code “a file
at a time.” But git is smart enough to consider your code “a
line at a time.” So if Filbert and Betty Lou are both making
changes to Hairball.java, but they’re working on different
parts of that file, it turns out that git can automatically and
intelligently merge the changes without you even having to
worry about it.

When you do a git pull operation, read the output carefully.
About 95% of the time, it will give you a happy message like
this:

232 CHAPTER 14. TEAM SOFTWARE DEVELOPMENT

Auto-merging Hairball.java
Merge made by the 'recursive' strategy.
Hairball.java | 1 +
1 file changed, 1 insertion(+)

This is git’s way of saying, “your teammate was editing the
same file(s) as you, but it’s chill; I figured out how to put
their changes into your copy without messing up anything
you were doing.” When this first happened to me, I admit I
was fearful, and couldn’t comprehend how it could really be
smart enough to integrate those changes without me checking.
But I’ve since learned to stop worrying and love the bomb,
and it really is “all good.”

The other 5% of the time, you’re not so lucky, and you’ll get
a sad message that says:

Auto-merging Hairball.java
CONFLICT (content): Merge conflict in Hairball.java
Automatic merge failed; fix conflicts and then commit the result.

This situation is called a conflict and essentially means that
you and your teammate were working in the same part of
the file and made incompatible changes. Perhaps one of you
changed line 57 in one way, and the other of you changed line
57 in a different way. Or perhaps one of you changed line 90,
while the other completely deleted lines 85-95. In these cases,
git can’t figure out what you want to do, so it throws it back
to you and asks you to manually resolve it.

Resolving it is generally pretty easy. You open up the offend-
ing file(s) in vim, and look for the markers “<<<<<”, “=====”,
and “>>>>>”. Here’s the kind of thing you’ll see:

14.6. TEAM-BASED VERSION CONTROL WITH GIT 233

...
<<<<<<< HEAD
* <tt>Cats</tt> are wonderful creatures that make good
* house pets.

=======
* A <tt>Cat</tt> is a small fuzzy animal that coerces
* humans into paying enormous sums of money and weekends
* of labor in exchange for being "cute."

>>>>>>> c6812dcd33b977de0e7f0e9cab1eb1376bcfda88
...

Here’s how to decipher that. The lines between the “<<<<<
HEAD” and the “=====” are what you had in your version of the
file. In this example, you changed the Cat class JavaDoc en-
tirely by rewriting it in a more feline-friendly way. Meanwhile,
your teammate (whose code is marked between the “=====”
and the “>>>>> c6812...”) made a smaller change to that
comment, changing “furry” to “fuzzy.” All that matters now
is what you want to do about these changes. It’s your job
as a developer to restore that part of the Cat.java file to be
what your team wants the code to look like moving forward.
Perhaps you keep your change, perhaps you keep your team-
mate’s, perhaps it’s a combination of both. But after fixing it
up the way it should be (with maybe a phone call or chat ses-
sion on Slack with your colleague to make sure you’re on the
same page), you will have removed the “<<<<<” and “=====”
and “>>>>>” markers and can “git add” and commit your
changes. Finally, you can then push the combined changes to
the team repo, and everything goes on hunky dory.

Normally, the only time you end up in the 5% conflict case
(instead of the 95% auto-merge case) is when you and your
teammates aren’t communicating well (or enough). Two de-
velopers both editing the same lines of code and not realizing
that the other person is doing it is usually a sign that you
need to work more closely together or be more explicit about
who’s working on what. A simple email or text often does the
trick.

234 CHAPTER 14. TEAM SOFTWARE DEVELOPMENT

Bottom line: using the git verbs add, commit, pull, and push
properly is your key to ensuring your team has a living, breathing,
healthy, working repository of shared code.

Here are the most common pitfalls I see:

• Forgetting to do a pull before trying a push. git won’t allow
you to push into a repo if you’re out-of-date. You must first
pull the recent changes so you’re all in sync, and then you
can push your new changes to it.

• Forgetting to do a local commit before trying to pull. git
won’t let you pull changes from another repo if you have car
parts all over your own garage. Make sure you check every-
thing in and have a clean local workspace before doing that.6

6 An alternative to a full local commit here is the “git stash” command
which I’ve found useful. Doing a “stash” is different than a commit, since you’re
not actually marking version control with labeled changes. Instead, you’re sort
of sweeping stuff under the rug to make your workspace temporarily clean, for
the sake of doing an important pull operation from your teammates. You can
then pull your stuff back out from under your rug and continue. For details,
type “man git stash” and read carefully.

Chapter 15

Doing design (1 of 2)

This chapter marks a watershed of sorts. Up to this point, we’ve
been doing analysis instead of synthesis. Analysis is when you
look at something that already exists – a design diagram or a code
snippet, say – and seek to understand it, usually by breaking it down
into its constituent parts. Synthesis, on the other hand, is designing
something that doesn’t already exist. Instead of scrutinizing a UML
diagram, we’re creating a UML diagram; instead of examining a
method, we’re writing a method.

Until now, I’ve presented you with example after example of classes
and methods already written, and diagrams illustrating their vari-
ous parts. But now it’s time to ask the question: “how do we figure
out what the right classes and methods are in the first place?”
It’s all well and good for someone to hand us Ballplayer, Team,
and Simulator classes. But how did we know to create those
particular classes? Why not Pitch, Catch, and Hit? Why not
FirstBaseman, Shortstop and Outfielder, or NationalLeague
and AmericanLeague?

Going from the general idea of a program to a list of classes is
tricky. It’s as much an art as a science. It calls for intuition and
imagination more than adherence to a set of rules. Nevertheless,
there are principles that guide the selection of good classes, and
we’ll talk about them in this chapter.

Of all the OO pioneers who weighed in on the question of how to

235

236 CHAPTER 15. DOING DESIGN (1 OF 2)

arrive at a good design, the one who had the most influence on
me was Rebecca Wirfs-Brock, who invented the technique called
responsibility-driven design. I’m highly indebted to her, and
recommend the original book authored by her and her colleagues.1

15.1 “Discovering the design”

I don’t know who first coined the phrase “discovering the design” (it
certainly wasn’t me; it might have been Wirfs-Brock) but when I
originally heard it my ears perked up. It sounded strangely paradox-
ical. “Design” was something one brought to the table and imposed
on one’s world, right? Not something one found already there. “De-
sign” seemed like a matter of invention, not discovery ; it was surely
something you did to a steam engine, not to a planet.

Yet hidden in this phrase is a powerful technique for OO design
that attempts to let the requirements speak for themselves. One
of Rebecca Wirfs-Brock’s great ideas was to begin with a written
description of a software program in action, and to cull from the
language clues as to what the “correct” classes are.

Let me immediately clarify that “correct” does not mean “there is
one and only one ‘right’ set of classes” for a particular program. In
fact, there are many such choices, some better than others, some
downright awful. What we mean by “the correct classes” is a set of
classes (and their corresponding inst vars and methods) that will:

• represent the domain well
• work seamlessly together
• be amenable to adaptation as the system requirements evolve
• distribute the responsibilities evenly among several classes
• neither duplicate nor omit important functionality

You get the picture. A good design is elegant, flexible, maintain-
able, and robust to change. Many choices of classes will not meet
these goals. A few will. “The correct set of classes” means any set
of classes that will do so reasonably well.

1Wirfs-Brock, Wilkerson, Wiener, Designing Object-Oriented Software.
Prentice Hall, 1991.

15.2. STRAIGHT FROM THE HORSE’S MOUTH 237

Start with a written description of the software, and:
1. Identify all noun phrases.
2. Eliminate obviously bad ones:

a) probable duplicates
b) nouns that aren’t instantiate-able
c) things you obviously wouldn’t represent
d) likely attributes of a class, not classes themselves

3. The remaining ones are your candidate classes. See which
of them “feel right.” Identify what each one knows and can
do.

Figure 15.1: Procedure for “discovering the design.”

15.2 Straight from the horse’s mouth

Wirfs-Brock’s procedure is paraphrased in Figure 15.1. We have to
somehow come up with a written description to kick things off. Of-
ten, a requirements specification2 has been authored by some-
one higher-up on our company’s food chain, and can be mined for
much gold. Sometimes, we ourselves take a step back and bang out
a few paragraphs that describe what users do and experience as
they work with the system.

The essential point is that the requirements themselves speak loudly
about what classes would be appropriate for the program it de-
scribes. Let’s see how.

Nouns, and only nouns

If you flash back to Schoolhouse Rock or Sesame Street, you’ll re-
member your grammatical parts of speech and realize that a noun
is the right kind of word for a class name. Every object (and there-
fore the class it’s an instance of) is a “person, place, or thing,” not
an action word, modifier, or anything else.

2Sometimes called a “req spec” – pronounced “reck speck.”

238 CHAPTER 15. DOING DESIGN (1 OF 2)

Further, not just not any old noun will do. Consider the list in
Figure 15.2: these are all nouns, but only one makes a valid class
name. Can you find it?

~ happiness
~ Beyoncé
~ oxygen

~ crocodile
~ teamwork
~ width

~ communism
~ recreation
~ London

Figure 15.2: All nouns...but not all good class names.

I claim the only legit class name in this list is crocodile. Here’s
why. First, some of these entries are “proper nouns” which means
they refer to specific instances of things, rather than categories.
In English, we almost always use capital letters to denote proper
nouns, which means when you see “Beyoncé” and “London” you can
immediately roll your eyes and move on.

Second, most of the other nouns aren’t instantiate-able. Here’s the
litmus test for whether a noun is instantiate-able: can you meaning-
fully put the word “a” (or “an”) before it? And can you meaningfully
make it plural and put a number (like thirteen) before it?

Clearly not. All of these phrases are plainly ridiculous:

• four happinesses (?)
• eleven oxygens3 (?)
• a teamwork (?)

• a communism (?)
• nineteen recreations (?)

Remember, the only thing we ever really do to a class is make
instances of it, to which we can do things. If you can’t imagine a
“new Communism()” or “an ArrayList of Happinesses,” it has no
business being a class.

3One could imagine a chemical analysis program that dealt with oxygen
atoms, among other things, and I’ve heard chemists speak loosely of things like
“an extra oxygen” or say “that molecule has five oxygens.” I still like OxygenAtom
much, much better as a class name even here, though.

15.3. CARRYING OUT THE PROCESS 239

The closest contender to crocodile is the word width. There may be
cases where this is a sensible class, but the reason I discard it is that
a width is almost certainly a modifier of some other object, rather
than an object itself. One could imagine Building, Image, and
Rectangle objects that all had an instance variable called width;
it’s harder to imagine “a width” as an entity in its own right, with
its own properties and operations.

Noun phrases

By the way, it’s often the case that instead of a bare noun, we use
a noun phrase as a class name. A noun phrase is simply a noun
with one or more modifiers. “Grizzly bear,” “chess tournament,”
and “public liberal arts college” are examples.

Singular, not plural

Finally, it should hardly be worth stating that all class names must
be singular, not plural. I don’t work in “a buildings,” but a build-
ing ; and nobody has “a dogs” as a pet. When we instantiate an ob-
ject, we’re going to say “Crocodile alice = new Crocodile()”,
not “Crocodiles alice = new Crocodiles()”.

15.3 Carrying out the process

1. Identify all noun phrases. Okay. We begin our semi-
automated process of deriving class names by starting with a writ-
ten description of the program’s requirements. Here’s a short ex-
ample:

240 CHAPTER 15. DOING DESIGN (1 OF 2)

A bicycle store needs to manage its inventory. Ship-
ments of various models of bicycles are received every
week from its suppliers, and customers place individual
orders for bikes and other accessories from the store.
The store manager must be able to place orders from
vendors, maintain contact information so they can be
confirmed or canceled, and view lists of the incoming
products and their expected arrival dates. The manager
also must be able to record multi-item orders from in-
dividual customers, accept and record down payments,
and track inventory levels to ensure that enough items
are ordered to satisfy customer demand.

Rebecca Wirfs-Brock’s process from Figure 15.1 calls for sifting
through the requirements description and circling all noun phrases.
Unless it’s an exact duplicate of one that previously occurred, be
conservative and circle every one. It would be a good exercise for
you to do this yourself in the box above, and then compare with
my answer:

A bicycle store needs to manage its inventory.
Shipments of various models of bicycles are received
every week from its suppliers , and customers place
individual orders for bikes and other accessories
from the store . The store manager must be
able to place orders from vendors , maintain
contact information so they can be confirmed or
canceled, and view lists of the incoming products
and their expected arrival dates . The manager
also must be able to record multi-item orders
from individual customers , accept and record
down payments , and track inventory levels to
ensure that enough items are ordered to satisfy
customer demand .

15.3. CARRYING OUT THE PROCESS 241

This is the raw material for the rest of the process. If we make
everything singular and lower-case, this leaves us with the following
list:

bicycle store
inventory
shipment
model
bicycle
week
supplier
customer
individual order

bike
accessory
store
store manager
order
vendor
contact information
list
incoming product
expected arrival date

manager
multi-item order
individual customer
down payment
inventory level
item
customer demand

2a. Eliminate probable duplicates. According to Figure 15.1,
the next step is to eliminate likely duplicates. Obviously things
like “bicycle” and “bike” refer to the same conceptual entity; we’re
hardly going to have a Bicycle class and a separate Bike class in
our program!

This isn’t always 100% straightforward, but it’s usually 99% so.
Different synonyms and turns of phrase are pretty easy to detect.
I think we can be pretty safe boiling this list down into a slightly
smaller one, where duplicates are shown:

bicycle store (== store)
inventory
shipment
model
bicycle (== bike)
week
supplier (== vendor)
customer (== individual customer)
individual order (== order

== multi-item order)

accessory
store manager (== manager)
contact information
list
incoming product
expected arrival date
down payment
inventory level
item
customer demand

The choice of which synonym to retain is mostly aesthetic. All
other things being equal, I usually choose the shorter one.

242 CHAPTER 15. DOING DESIGN (1 OF 2)

2b. Eliminate nouns that aren’t instantiate-able. Now we
apply our test: “can we put ‘a/an’ or a number before the noun
phrase, and have it make sense?”

Actually almost all of these remaining entries pass that test, with
the exception of customer demand, and possibly contact information.
While one could indeed envision “four or five customer demands”
in other contexts, it’s pretty clear from the text that this is being
used as an abstract concept, not an individual object. “Contact
information” is a closer call, but by inspecting the requirements
again, we can see that this is really an attribute of vendor/supplier.
We’ll therefore strike the idea of a “ContactInformation” class.
We’re now down to:

store
inventory
shipment
model
bicycle
week

supplier
customer
order
accessory
manager
list

incoming product
expected arrival date
down payment
inventory level
item

2c. Eliminate things you obviously wouldn’t represent.
When you look at some of these surviving noun phrases, you scratch
your head. Would we really have a “Week” class? Surely not. Also,
although this program will no doubt be used by the manager of
a store, does it really make sense to represent the Manager as an
object? We’ll cross out both of these.

2d. Eliminate likely attributes of a class. Things are getting
a bit more subjective, but some of these remaining nouns definitely
seem “too small” to be their own classes. Consider expected arrival
date. Surely this is better modeled as a property of an order, rather
than as its own individual object. The same could be said for down
payment and inventory level. Generally speaking, noun phrases that
seem to refer to bits of data that have an obvious “home” in another
class ought to be modeled as inst vars, not classes.

So now here’s all that remains:

15.3. CARRYING OUT THE PROCESS 243

• store
• inventory
• shipment
• model
• bicycle
• supplier

• customer
• order
• accessory
• list
• incoming product
• item

We dub these our candidate classes, which essentially means
“those noun phrases which each have a very good chance of actually
turning into a class in our program.” We’re not 100% committed
to them yet, but they pass muster enough to deserve a deep think.

3a. See which of the remaining ones “feel right.” We’ve come
a long way semi-mechanically. Now it’s time to allow ourselves the
luxury of turning over in our minds each candidate class, “trying it
on,” so to speak.

It’s here that a clear picture of our software system emerges. When
I look at the ten candidate classes, here’s what comes to mind:

• First, and most importantly, I realize that the word “order”
was used in two different ways in the requirements descrip-
tion. You may have actually noticed this earlier when we
scratched out “expected arrival date” and “down payment” in
step 2d. Those were both aspects of an order...but what sort
of order? If we go back to the Bible (the req spec) we see
these two phrases:

“...customers place individual orders for bikes and other
accessories from the store...”

and

“...The store manager must be able to place orders
from vendors...”

244 CHAPTER 15. DOING DESIGN (1 OF 2)

Aha! Different beasts entirely. One is something Mrs. Jami-
son places with us; the other is something we place with
Schwinn, Inc.

This sort of post-noun-phrase-stage epiphany isn’t uncom-
mon. English words are used in a variety of ways, which
makes them versatile and suggestive, yet imprecise. Here, we
clearly have two different notions of “order”: (1) a contract
for delivery from one of our big suppliers like Trek or Can-
nondale (which might include a dozen bikes or more), and (2)
a customer’s reservation of a particular model/color/style of
bike, which he or she is anxiously waiting to take home for its
first ride. More succinctly: one kind we buy, and the other
kind we sell.

We’re going to have to invent at least one noun phrase of
our own here, since the req spec author double-dipped on the
word “order”; perhaps we’ll call the first one a PurchaseOrder
and the second one a CustomerRequest. (In situations like
this, I think it’s better to avoid using the original word al-
together, since it was ambiguous to begin with and therefore
may encourage confusion down the road.)

• Second, I notice that some of these nouns have overlapping
meanings, and I sense that inheritance might be applicable.
In particular, consider these four noun phrases:

bicycle accessory incoming product item

These clearly all refer to things that can be purchased. When
we go back to the Bible, we see that the modifier “ incoming” on
product really refers to the temporary state of a product (i.e.,
one in transit from a supplier), not a fundamentally distinct
kind of thing. So I’m going to be bold, ditch “incoming,” and
make these two assertions:

15.3. CARRYING OUT THE PROCESS 245

1. item == product
2. bicycle and accessory are two different kinds (subclasses)

of item

With these changes, our list is now:

• store
• inventory
• shipment
• model
• bicycle (subclass of item)
• supplier

• customer
• purchase order
• customer request
• accessory (subclass of item)
• list
• item

3b. Identify what each one knows and can do.

As you’ll recall from Chapter 2, a well-conceived class combines
both state and related behavior. This is the cornerstone of good
object-oriented design.

Hence at this stage, we apply this litmus test to the candidate
classes that remain. One tool to facilitate this procedure is creating
a set of CRC cards, which stands for “Class, Responsibilities,
Collaborations.” The idea is for your design team to create a literal
3×5 card for each candidate class, put them on a flat workspace so
you can move them around and compare and group them, and see
whether they seem to fit into a cohesive whole.

TheClass for each card is just the class name (which can be fluid as
you try to zero in on the best name). TheResponsibilities include
the state (“what an object of that type knows”) and the behavior
(“what an object can do”), which I usually designate in separate
sections. Finally, the Collaborations are the other classes the
class is likely to work closely with to accomplish its job.

If you try to make a CRC card for a class, and have trouble com-
ing up with appropriate contents (particularly the Responsibilities
section), that’s a red flag that perhaps this isn’t a good class after
all.

246 CHAPTER 15. DOING DESIGN (1 OF 2)

Let’s start at the top.

Shipment:
Knows: which vendor is delivering it

which purchase order it is fulfilling
the expected arrival date
the items in each shipment

Can: receive and add to inventory
cancel
update status

Collaborates: PurchaseOrder, Item, Inventory, Supplier

Our Shipment class looks like a good one. It clearly bears the hall-
marks of good OO design: it has state (information about what’s
in the shipment, when it’s due, and who it’s from) and associated
behavior (accept it, cancel it, get an updated status).

You might be thinking, “that’s great, Stephen, but how did you
know what to write in that box?” I admit it’s not a turn-the-crank
process. This is part of the design process that’s art, not science.
Basically, though, you have to try to create a little egocentric world
in your mind, the center of which is the class in question.

Here, I said to myself, “let’s view the entire world through the lens
of a Shipment. First, in the real world, what ought a shipment to
‘know ’?” The answer is things that relate directly to that shipment.
The items it should contain and the expected date of receipt are
good examples. The number of bicycles in the store is not, nor is
a customer’s contact information. Then, I asked “in the real world,
what actions pertain to a shipment?” The main one, of course, is to
receive that shipment, which involves paying for it and adding the
items to the store. We also might ask the supplier for an update if
the shipment is past date, or even decide to cancel it and go with
another vendor if it’s taking too long.

The important thing here isn’t to get all the “knows” and “cans”
100% right – things will evolve as our understanding evolves. It’s

15.3. CARRYING OUT THE PROCESS 247

more important to recognize that there are clear “knows” and “cans”
for this class, which certifies it as a bona fide entity within our
object-oriented system.

The “Collaborates:” list consists of those other classes we’ve identi-
fied as likely co-participants in various system functions. A Shipment
is related to a PurchaseOrder, of course, since the former is the ful-
fillment of the latter. Its also comprised of Items, and will need to
update the Inventory levels when it arrives. It may need to call
methods directly on the Supplier class in the case where updates
or cancellations are necessary. Often the collaborations list just
helps us organize our thoughts (and our 3 × 5 cards) by grouping
related classes together.

Let’s walk through a couple of other CRC cards.

Accessory:
Knows: its name

its manufacturer
its part #
its cost
its compatible bicycle models

Can: purchase
find quantity in stock
add to customer request

Collaborates: CustomerRequest, Model, Inventory

An Accessory – which we’ve tentatively identified as a subclass
of Item – has attributes like name and cost, and also knows which
bike models (if any) it is compatible with. This prevents a customer
from ordering the wrong kind of bike seat or fender for a particular
bicycle, for instance. It can also be purchased (duh), either on the
spot or as part of a special customer order. It can also provide
its quantity information by interfacing with the Inventory class.
Speaking of which...

248 CHAPTER 15. DOING DESIGN (1 OF 2)

Inventory:
Knows: the quantity of each item in the store

Can: add items when shipments arrive
remove items when purchases are made
find quantity in stock

Collaborates: Item (and subclasses)

I smell a Singleton. Our store is likely going to have a single
Inventory object which can be used to query and update its item
quantities.

By the way, you may have noticed that one of the “Can” items – “find
quantity in stock” – was listed on the CRC card for both Accessory
and Inventory. This isn’t wrong; probably an Accessory object,
when asked for its current quantity, will turn around and query the
Inventory singleton to produce that answer. We’ve discovered a
key shared function between classes.

That’s the inventory of the store, and now for the Store itself:

Store:
Knows: its inventory

Can: ?
Collaborates: Inventory

If we didn’t realize it before, this is the moment when we discover
that our Store class is weak sauce. Turns out there really isn’t
anything for a Store object to know or do, other than manage
its inventory, which of course is the job of the Inventory class.
The CRC card process revealed a false infiltrator, and we discard
(literally) the Store.

You get the idea. I’ll leave the other CRC cards as an exercise for
the reader. Remember, there are no hard-and-fast right answers
to this process: many different designs are possible, and it’s only
important to get a set of classes that are cohesive, modular, encap-
sulated, and work well together.

15.4. A LONGER EXAMPLE 249

15.4 A longer example

Figure 15.3 on p. 254 gives a second, longer example of a req spec.
We’ll develop this example in the remainder of this chapter and
in the next one. In particular, it involves a non-trivial inheritance
hierarchy.

First, test yourself on identifying noun phrases, and see if you find
the same ones marked in Figure 15.4.

Our mechanical noun phrase extraction produces this list:

● intro student
● skill
● professor
● Uno simulation
program

● simulator
● Uno game
● player
● student
● Player class
● card
● color
● wild

● game
● deck
● type
● number
● “wild” card
● time
● hand
● virtual table
● “up” card
● chance
● discarded card
● object

● rule
● rank
● special effect
● direction of play
● turn
● unfortunate
player

● round
● point
● “forfeit cost”
● point value
● cumulative score
● winner

Note that this req spec somewhat unusually refers to a specific
object-oriented class (Player) which will of course become one of
our actual classes in the end.

2a. Eliminate probable duplicates. After eliminating likely
duplicates, our list is shrunk to:

● student
● skill
● professor
● simulator
● game
● player
● card
● color
● “wild” card

● deck
● type
● number
● time
● hand
● virtual table
● “up” card
● chance
● object

● rule
● rank
● special effect
● direction of play
● turn
● point
● “forfeit cost”
● cumulative score

250 CHAPTER 15. DOING DESIGN (1 OF 2)

An interesting decision here involved the terms game and round.
The former is used in a couple of different senses: Uno itself is a
“game,” yet the word “game” is also used to mean a single deal of the
cards, at the end of which one player goes out. Curiously, there’s
no noun in the description for “the overall match” which comprises
50,000 games. We may find we need such a class. In any event, I
scratched round in favor of game in the list above.

2b. Eliminate nouns that aren’t instantiate-able. After get-
ting rid of the non-instantiate-able stuff, we shrink further to:

● student
● professor
● simulator
● game
● player
● card
● color

● “wild” card
● deck
● type
● number
● hand
● virtual table
● “up” card

● rank
● special effect
● direction of play
● turn
● point
● “forfeit cost”
● cumulative score

It’s worth drawing attention here to the noun “rule,” which I dis-
carded. I find that many students’ inclination is to keep rule as a
class, whereas I think the description makes it clear that “rules in
general, according to which the game is played” is what’s intended.
And that would steer us away from instantiating some number of
Rule objects.

2c. Eliminate things you obviously wouldn’t represent. The
only ones I got rid of on this step were (ironically) student and
professor. Nothing personal.

2d. Eliminate likely attributes of a class. I think you’ll agree
that color, type, number, and rank are best suited as attributes of
a Card class, not as classes in their own right. Too, direction of
play – which is simply “clockwise” or “counter-clockwise” – seems
like a property of the game. Similar thinking leads to deleting point
and cumulative score (attributes of the Players) and forfeit cost (an
attribute of a Card.) We’re now left with only:

15.4. A LONGER EXAMPLE 251

● simulator
● game
● player
● card

● “wild” card
● deck
● hand
● virtual table

● “up” card
● special effect
● turn

3a. See which of the remaining ones “feel right.” This is
honestly a pretty darn good list. If I were to nitpick it further, I’d
probably say that “up” card will probably turn out to be an instance
variable of type Card, rather than its own class. I’d wager that turn
doesn’t end up being a full-blown class either, since “whose turn it
is” is better served with an inst var.

The “wild” card noun phrase is quite literally going to become a
wild card for us, as we’ll discover in the next chapter. It conceals
what is really going to be a deep inheritance hierarchy, in which the
different types of cards are all subclasses of Card. This is where the
special effects come into play as well – in the end, I didn’t model
this as its own class, but rather embedded the functionality into
the Card subclasses. Either way’s okay, though.

3b. Identify what each one knows and can do. I’ll sign off
this chapter by taking a crack at CRC cards for some of the classes
that are going to survive the whole design vetting. These are quality
classes that will ensure a solid design that’s robust for the present
and the future!

Simulation:
Knows: the name of each player

the Player subclass for each player
how many total games to simulate
how many games have been played so far

Can: play some number of games and compute final scores
Collaborates: Game, Player (and subclasses)

252 CHAPTER 15. DOING DESIGN (1 OF 2)

Card:
Knows: its type

its color (if applicable)
its number (if applicable)
its “forfeit cost”
whether it can be legally played on an up card
whether the player who played it can call a new color

Can: perform any special effect appropriate to its type
Collaborates: Hand, Deck

Deck:
Knows: the contents of a standard Uno deck

which face-down cards it contains, in order
which face-up cards have been discarded

Can: draw a new card
reshuffle (when empty)

Collaborates: Card (and subclasses)

Game:
Knows: which player’s turn it is

the current direction of play
Can: start a simulation of a single Uno game

advance to the next player
reverse the direction
observe the end of the game, and report scores

Collaborates: Player (and subclasses), Hand, Deck

Hand:
Knows: which cards are being held

Can: defer to its controlling Player object to choose a card
defer to its controlling Player object to call a color
add a card (when the player must draw)
count the “forfeit costs” of all its cards

Collaborates: Player (and subclasses), Card

15.4. A LONGER EXAMPLE 253

Player:
Knows: its hand

all cards that have been played since last shuffle
Can: select which card to play on the “up card”

choose a color to call immediately after playing a wild
Collaborates: Card, Game

254 CHAPTER 15. DOING DESIGN (1 OF 2)

To test his intro student’s algorithmic development skills, a professor
is developing an Uno!® simulation program. The simulator simulates
a number of consecutive Uno games, each of which has four players
participating in it. Students write their own Player classes, which are
called by the simulator in order to play cards and call colors after wilds
are played.

Uno is a game played with a special deck of cards of various types.
Most cards have a color (red, blue, yellow, or green) and feature
either a number on them (from 0 to 9) or else a special action (like
“reverse,” “skip,” etc.) Some cards are “wild” cards, which do not have
any particular color, and thus can be played at any time.

When play begins, the deck is shuffled, cards are dealt to each player’s
hand, and one card is turned face up in the middle of the virtual table,
called the “up card.” Each player in turn gets a chance to play, by
playing a card from their hand on top of the up card. That up card is
then replaced by the new up card. If the deck is ever exhausted (i.e.,
runs out of cards) the discarded cards are reshuffled and placed beside
the up card to be drawn anew. The object of the game is to be the
first player to “go out” by playing all cards from your hand.

In order to be legally played, a card must match according to certain
rules (either the color of the card played, or the rank of the card played,
must match the up card.) Some cards have special effects, involving
reversing the direction of play, skipping over player’s turns, or causing
unfortunate players to have to draw additional cards from the deck.

When one player wins a round, he/she gets awarded points based on
the cards remaining in other players’ hands. Each type of card has
“forfeit cost,” or point value that determines how much it is worth. As
it runs, the simulator maintains the cumulative scores of the players as
they each win games, so that at the end of 50,000 games, an overall
winner can be declared.

Figure 15.3: The requirements specification for a game simulator.

15.4. A LONGER EXAMPLE 255

To test his intro student ’s algorithmic development skills , a professor is
developing an Uno simulation program . The simulator simulates a number
of consecutive Uno games , each of which has four players participating
in it. Students write their own Player classes , which are called by the
simulator in order to play cards and call colors after wilds are played.

Uno is a game played with a special deck of cards of various types . Most
cards have a color (red, blue, yellow, or green) and feature either a number
on them (from 0 to 9) or else a special action (like “reverse,” “skip,” etc.)
Some cards are “wild” cards , which do not have any particular color, and
thus can be played at any time .

When play begins, the deck is shuffled, cards are dealt to each player’s hand ,
and one card is turned face up in the middle of the virtual table , called the
“ up card .” Each player in turn gets a chance to play, by playing a card
from their hand on top of the up card. That up card is then replaced by
the new up card. If the deck is ever exhausted (i.e., runs out of cards) the
discarded cards are reshuffled and placed beside the up card to be drawn
anew. The object of the game is to be the first player to “go out” by playing
all cards from your hand.

In order to be legally played, a card must match according to certain rules
(either the color of the card played, or the rank of the card played,
must match the up card.) Some cards have special effects , involving
reversing the direction of play , skipping over player’s turns , or causing
unfortunate players to have to draw additional cards from the deck.

When one player wins a round , he/she gets awarded points based on the
cards remaining in other players’ hands. Each type of card has “ forfeit cost ,”
or point value that determines how much it is worth. As it runs, the simula-
tor maintains the cumulative scores of the players as they each win games,
so that at the end of 50,000 games, an overall winner can be declared.

Figure 15.4: Noun phrases.

Chapter 16

Doing design (2 of 2)

16.1 The two domains

Before we dive back in and complete our two examples from last
chapter, let me make an observation about the classes in an OO
program. They tend to come from two different sources. We call
these two categories “the problem domain” and “the solution
domain.”

The problem domain provides classes that relate to the problem the
program is designed to solve. A key give-away of a problem domain
class is that the user herself recognizes the term used. She thinks
of that entity as central in what the system does/is.

For instance, in an eBay type application, classes like Bid, Auction,
Item, Seller, and Buyer are all from the problem domain. eBay
users think about, and talk about, these very concepts when they
think about the system, even if “code” never crosses their mind.

The other source of classes is the solution domain, which consists of
supportive classes that don’t really represent things about the prob-
lem itself, but which are necessary to solve the problem. Suppose
an email application had a SMTPServer class. This would repre-
sent a connection to a piece of hardware that acted as a SMTP
(Simple Mail Transfer Protocol) server to deliver electronic mail. Is
this class’s functionality necessary to send email, as the email ap-

257

258 CHAPTER 16. DOING DESIGN (2 OF 2)

plication needs to do? Yes. But does an everyday email user think
about “SMTP Servers” being involved? Likely not. The same could
be said of classes like “DatabaseConnection,” “MessageListener,”
and “LoginPane.” These classes all perform critical supporting
functions and therefore are vital to the operation of the system. At
the same time, though, we recognize that they are tangential to the
main purpose of the system as the user sees it: users of Wikipedia
don’t think in terms of “database connections,” nor email users of
“message listeners,” nor Spotify users of the “login panes” in their
UI. So we relegate those classes to a different realm of sorts; one that
contains classes to perform functions, not to represent the domain’s
reality.

You might wonder which of the two domains is most important to
get right. The answer is unquestionably the problem domain. Think
about it: if Spotify decided to change their underlying storage
mechanism, and thus needed to retire their DatabaseConnection
class, that’s not a big deal to their user base. If the new program
version is implemented well and doesn’t introduce a lot of laggi-
ness or bugs, the user will be unaware that it was even changed.
But change something in the problem domain, and whoo Nellie, the
whole system experiences a change. Imagine if Spotify got rid of
their Song or Playlist classes. The entire application would have
to perform differently, with serious consequences for the user.

16.2 Turning CRC cards into UML

When we last left our heroes in chapter 15, they had succeeded in
turning an English language description into a set of CRC cards.
That’s a ton of progress. All they need to do now is complete the
trick: turn those CRC cards into a UML class diagram, and then
into Java code. And that’s just what we’ll do in the rest of this
chapter.

The bike store example, continued

Reacquaint yourself with the CRC cards on pp. 246–247. These
reflect some of the candidate classes from our bike store example.

16.2. TURNING CRC CARDS INTO UML 259

You’ve probably already figured out that when turning a CRC card
into a class, the “Knows:” section typically gets turned into instance
variables, and the “Can:” section becomes methods. It isn’t always
a straightforward one-to-one mapping, but it’s often pretty close.

Let’s start with Shipment on p. 246. The four items on its “knows”
items all call out for instance variables:

• “which vendor is delivering it”: type Supplier
• “which purchase order it is fulfilling”: type

ArrayList<PurchaseOrder>
• “the expected arrival date”: type Date1

• “the items in each shipment”: type ArrayList<Item>

In terms of a UML diagram, we would depict the third of these as
an entry in the middle class box (see Figure 16.1), and the other
three as associations to other classes. Also, the “can” list mentions
that we can update the “status” of a Shipment, which will probably
entail a String status inst var as well.

As for its methods, we have getters and setters for status and sup-
plier, and also the ability to .cancel() and .receive() the ship-
ment. At this point we’re sort of guessing as to argument types and
return values for each method; it seems to me that both .cancel()
and .receive() can simply be argument-less and return void.
(We’ll amend this assumption later if it turns out to be incorrect.)
The finished class is in the upper-left corner of Figure 16.1.

We didn’t actually write full CRC cards for all the classes in this
design, but that’s okay: to complete Shipment, we can just sketch in
temporary placeholders for classes like PurchaseOrder and Supplier.

The Accessory card from p. 247 has a number of “knows” entries,
though when we consider where to put them, we realize that many
of them will go in the abstract Item class. Only an ArrayList of
Bicycle objects seems appropriate as an inst var for the Accessory
subclass specifically, and that is what the diagram shows. Since
p. 247 tells us that an Accessory “knows its compatible bicycle

1The java.util package has a Date class that represents all the necessary
aspects of a day in time on planet Earth. This is a better choice than a String
or a handful of ints to do it ourselves.

260 CHAPTER 16. DOING DESIGN (2 OF 2)

Figure 16.1: A first crack at converting CRC cards from Chapter 15’s
bicycle example into UML.

models,” it seems appropriate for the class to support a method like
.compatibleWith() that returns a boolean indicating whether the
accessory in question is compatible with a particular bike.

Finally, our Inventory CRC card (also on p. 247) tells us that
in addition to the standard Singleton stuff, we need to be able to
.add() and .remove() quantities of items from the Inventory, as
well as get a current count of how many units of an Item we have in
stock. One way to implement this would be through a Hashtable
that maps each Item to an in-stock quantity, and that is what
Figure 16.1 shows.

I think you’ll agree this is a pretty straightforward, though not
completely mechanical, process. CRC cards have already identified
the lion’s share of the program’s important static structure, and go
a long way towards giving us a UML class diagram from which we
can write code.

The Uno!® game example, continued

Now let’s work on the Uno!® example from the CRC cards on
pp. 251–252. We’ll break this up into two UML diagrams, one

16.2. TURNING CRC CARDS INTO UML 261

for the principal classes (Figure 16.2), and the other for the Card
inheritance hierarchy (Figure 16.4).

The CRC cards didn’t explicitly say that Simulation would be our
main() class, but it’s as good a choice as any, so that’s what’s re-
flected in the diagram (bottom-left). All the “knows” have been
given inst vars. The Simulation will instantiate lots of Game ob-
jects: one for each of the 50,000 games in the match, to be precise.
Each Game’s .play() method will simulate a single game to com-
pletion, and return an array of the scores to add to each player’s
cumulative total (held in the Simulation class). Btw, we could
have made Simulation a Singleton, and given it non-static inst
vars. Your call.

The “double dispatch” technique

The Game CRC card (middle of p.252) tells us that it must main-
tain the current player and the direction of play at all times. These
two bits of information are represented as inst vars in the sec-
ond compartment of the class. Game also has methods on it to
.advanceToNextPlayer() and to .reverseDirection(). These
can be called by any other part of the program in order to mod-
ify the game’s state. Our plan is for different Card subclasses to
invoke these methods to carry out their special effects: see the
.performCardEffect() method on the abstract Card class in the
upper-left corner.

This technique is referred to as double dispatch, and it can be
disorienting at first. In double dispatch, you call a method on object
A, passing it another object B as an argument. Object A’s method
then, in addition to whatever else it might need to do, will call
method(s) on B.

Figure 16.3 shows this in action for the Uno game. In this scenario,
the Game object determines that the next player is #3, and therefore
instructs the third Hand to .play() a card. Note that g passes
h3 the argument “this” in the call to .play(). That’s how
double dispatch works: h3’s .play() method now has possession of
the Game object g, which it can call methods on and/or pass around
further. In this case it does both: first, h3 turns around and calls

262 CHAPTER 16. DOING DESIGN (2 OF 2)

Figure 16.2: A first cut at converting CRC cards from Chapter 15’s Uno
example into UML.

.getUpCard() on g, to find out what the up card is. Then, when it
passes that up card along to p3’s .play() method, and learns that
the Player algorithm chooses to play card #7 from her hand (a blue
reverse), it calls .performCardEffect() on that ReverseCard. The
Card object c now also has possession of the Game object, and can
tell it to do the two things required: reverse the direction of play,
and then advance to the next player’s turn. Other types of cards
would do different things instead, as described in the next section.

Back to Figure 16.2. We see that the Deck class – whose CRC card
was given on p. 252 – contains two collections of Card objects, one
to hold a sequence of face-down cards and one for the face-up cards.
The rest of this class is self-explanatory.

Hand objects each hold on to a list of Cards, of course, as well as
the corresponding player’s name for good measure (which wasn’t
on the CRC card). It also maintains an inst var to a “Player”: this
is the creation by each of Stephen’s students that implements the
Player interface and thus provides an algorithm for choosing cards
and colors. Two example players have been shown: one that plays
wild cards as soon as it can, and another that holds them until
forced to. (Surprisingly, to me anyway, the former outperformed
the latter in most simulated games.)

16.2. TURNING CRC CARDS INTO UML 263

The Card class hierarchy

Finally, let’s figure out the Card class and its subclasses. It’s a
bit tricky. One might think that a Card having a “number” is a
no-brainer...except that not all cards have numbers (like Skips or
Draw 2’s.) Very well, then, at least all Cards have a color, you
say...except that wild cards don’t have that either.

The trick is to recognize when there are commonalities between
card types, and to infer the presence of appropriate abstract classes.
Figure 16.4 gives the idea. All of the associations here are top-down
inheritance (“is-a”). In addition to all the concrete Card types you’d
expect – DrawTwoCard, ReverseCard, WildCard, etc. – we have
created abstract ColoredCard and ActionCard classes.

But isn’t this overkill, you might ask? It is not, for the following
reason: each piece of information is now in only one place. For
example, all numbered cards and “action cards” have a color, but
wilds (of either variety) do not. Therefore, it makes sense to de-
fine the color inst var in the superclass of all the Card types that
have colors. It shouldn’t be in the Card class itself – that’s too
general, since not all Cards have colors. And it shouldn’t be in the
NumberedCard class – that’s too specific, since more than just num-
bered cards have colors. By similar logic, only the NumberedCard
class should have an int inst var.

Furthermore, since all “action cards” have the same forfeit cost
(20 points) it is appropriate to define a (non-abstract) .forfeitCost()
method in the (abstract) ActionCard class. That way, SkipCard,
ReverseCard, and DrawTwoCard don’t need to override it.

Note that WildCard is a concrete class, even though it has a sub-
class. This is perfectly okay (in Java), and necessary since there are
indeed ordinary wild cards in the deck. Both types of wilds have
the same forfeit cost (50 points) and both require the player to call
a color, but the Draw 4 variety obviously has a different effect on
the game, and therefore provides its own .performCardEffect()
method that overrides that of the WildCard superclass (and the
Card superclass).

264 CHAPTER 16. DOING DESIGN (2 OF 2)

16.3 Evaluating a design

I end this chapter by giving a few simple guidelines for sanity-
checking your design once you’ve gotten this far. Again, there is no
one “right way” to design a program, but there are plenty of wrong
ways, and some of them are easy to spot.

Here’s my super short “must-do” checklist:

1. Each class represents a crisp and coherent entity.
2. Each class does one thing well.
3. Responsibilities are distributed over the entire design.
4. There is evidence of encapsulation.

The first item on the list is somewhat intangible, but oh-so-important.
It basically means that the meaning and purpose of each class
should be natural and easy to describe. If you find yourself strug-
gling to articulate what specific type of entity one of your classes
actually represents, rethink it.

The second item involves a very common pitfall for beginning de-
signers: having too few classes, each of which does too much.2

There’s a funny name for a class that does too much: it’s called
a “god class” (no joke.) Very often, I see students creating designs
that on the surface seem to have several collaborating classes, but
which in actuality have all the real functionality in one god class
while the others serve merely as data containers.

Strive instead to have each class do only one self-contained job, and
to do it well. Remember: the larger your classes are, and the more
tasks each one encompasses, the less encapsulated your program is
bound to be.

Related to this is the third item, which is that when your program is
in operation, most of its important responsibilities should be shared
between the different classes. This is exposed clearly on sequence
diagrams: if you find that most of your arrows are emanating from a
single vertical line, that’s a bad sign. If you look at the Uno design,
you’ll see that any significant operation – like a player actually

2I have a theory that this is normally due to simple laziness in creating new
files, but I’ve never seen that proven.

16.3. EVALUATING A DESIGN 265

taking her turn – involves many classes operating in tandem: Game,
Deck, Hand, a Player implementation, and some subclass of Card.
This is A Good Thing.™

Finally, for each class, you want to scrutinize its list of inst vars
(both those in the second compartment and those implied by asso-
ciations) and its methods and make sure they all “fit together” well.
They should all make sense for that type, and the data and behav-
ior should go hand in hand. Each class’s design decisions should be
cleanly insulated from others. Ideally, when you look at your de-
sign, you should see a picture like the right-hand side of Figure 2.2
(p. 26), not the left.

266 CHAPTER 16. DOING DESIGN (2 OF 2)

Figure 16.3: An illustration of the double dispatch technique.

Figure 16.4: The Card class hierarchy from Chapter 15’s Uno game exam-
ple.

Chapter 17

Use cases

During my start-up-company days1, it occurred to me that in order
to have a successful product, you need to do two important things:

1. Build the right thing.
2. Build the thing right.

By the first of these items, I mean you have to create a product
that actually helps people, that truly meets a need, lessens some
pain, scratches an itch, or makes their life better in some way. The
second one means you have to engineer it well: to make it efficient
and proficient, with an elegant design that is easily maintainable,
reasonably bug-free, and adaptable to future technology changes.

Thought experiment: if your project team could only manage to do
well at one of these activities, which would you choose? (Take a
moment and consider before reading further.)

Here’s my answer. It is certainly important to design and code
things well so that your software product will be robust, flexible,
and extensible for the long haul. But if you can only excel at one
of the two above items, my advice is to make darn sure it’s the first
one.

Here’s why. If you screw up the second one, you’re going to have
a bunch of pissed-off customers, and of course nobody wants that.

1None of my entrepreneurial endeavors ended in IPOs or lucrative buy-outs,
partially because of the lessons of this chapter.

267

268 CHAPTER 17. USE CASES

Twitter and Facebook will light up with complaints about how your
product is buggy, doesn’t do what was advertised, has trouble in-
tegrating with other software, keeps missing release dates, and so
forth. And yes, that can indeed be a headache.

But if you screw up the first one, you’re going to have no customers.
And believe me, that’s a lot worse. Your well-built, snazzy-looking,
bug-free little product isn’t going to get any airtime on social media
because nobody cares. It simply isn’t something people find worth
using, and so all the great engineering in the world isn’t going to
be of any use.

Incidentally, if there’s lots of complaining on the Internet about
how your product is buggy, that’s actually a really nice situation
to have. It means that people are using your code, and that they
care enough to gripe. You’ve (partially) solved a problem that they
genuinely want solved, and that means that ultimately, if you can
manage to get #2 under control, you’re going to have a market and
a chance at a big success.

Here’s another thought experiment: why, if #1 is the most impor-
tant thing to get right, do we spend almost the entire Computer
Science curriculum teaching students how to do #2 well? Think
about it: just about every CPSC course you’ve taken (and will ever
take) involves some aspect of #2.

I think there are several answers to this, but much of it comes
down to the fact that #1 is just harder to teach. It’s certainly
not as predictable as #2 is. Not as much is known about it. For
the various aspects of #2, there are quite a few reliable and even
quantifiable techniques that the Computer Science community has
discovered and which have stood the test of time. If you follow
best practices, you’re going to end up building your code right.
But knowing what program to write in the first place is a different
realm entirely, and it requires a lot of intuition about people and
their fickleness.

Steve Jobs was a genius at #1, and he had Steve Wozniak as his
wingman doing #2. When top engineers came and went at Apple,
the company could survive the changes because the principles they

17.1. CAPTURING REQUIREMENTS 269

Figure 17.1: A simplified depiction of the software development lifecycle.

were using were transcendent. When Jobs wasn’t there, though,
you could sure see the difference.

17.1 Capturing requirements

This chapter is a brief look at #1. It’s a different phase of the soft-
ware development lifecycle than you’re used to focusing on. A
simplified picture of this lifecycle is given in Figure 17.1. Each box
represents an artifact, which as you may remember (p. 141) means
the tangible result of some software development activity. The ar-
rows between boxes are labeled with those activities, or “processes.”
During the time that your development team is working on a partic-
ular process (sometimes called “being in a particular phase”) they
are focused on producing the artifact at the end of the arrowhead.
That artifact will capture the result of their thinking in a tangible
form, where it can then be the input to the next phase.

Any application starts with an idea, of course, which is “something
that could exist, but doesn’t yet.” For bite-size projects, one could
set to work coding up the idea directly, dispensing with most of
this diagram. But for larger projects this doesn’t work very well.
The first problem is that there is often not enough detail specified
about “the idea” yet to know how to proceed. In other words,
the design team doesn’t yet fully know what the requirements2

2“Requirement” is just a loose term for “something the proposed software

270 CHAPTER 17. USE CASES

are for the system they’re being tasked to build. The activity of
requirements formulation is intended to remedy this situation.
There have been various methodologies proposed for coaxing a more
detailed description of what the proposed software is supposed to
actually do, one of which (Use Cases) is the subject of this chapter.
Regardless of how they are elucidated, though, the result is some
form of requirements specification (or “req spec”) as we first saw
on p.237.

Churning out a design document from a req spec is the subject
of design, of course, which we covered in chapters 15 and 16. The
term “implementation” is a fancy word for “coding” in a program-
ming language like Java. The testing phase typically involves both
unit testing and system testing, which work at different levels
of granularity to ensure that each individual software component
works according to its specification, and that the system as a whole
does. Finally, deploying the product to the user base is the culmi-
nation of a release cycle, and is usually cause for much celebration
(and sometimes, alcohol.)

As I indicated, Figure 17.1 is simplified to the point of being naïve.
For one thing, in a real life software process the various phases loop
back upon each other: you always learn things in one phase (say,
design) that make you go back and revise the work in an earlier
phase (say, requirements formulation). Also, it’s rare that an en-
tire, fully-functional system gets built in just one execution of this
step-by-step chain. Today’s software teams iterate through this
process, or portions thereof, multiple times as they converge on a
fully-implemented product. Moreover, larger projects have different
groups of people working on different parts of the lifecycle: a “re-
quirements team” with input from marketing, a “design team” led
by an architect that focuses on strategic implementation concerns,
a “programming team” to actually write the code, “test teams” and
“QA (quality assurance) teams” to handle the last few phases, etc.
Figure 17.1 is really a caricature of the necessary phases, and one

system is required to do.” Whatever form they may ultimately take, “the re-
quirements” spell out what the design team needs to know in order to build
what’s expected of them. The requirements are a sort of contract between the
management and engineering teams.

17.1. CAPTURING REQUIREMENTS 271

simple way they might fit together.

For now, though, the diagram suffices for our needs. My only real
motive for showing it to you is to help you mentally place this
chapter’s content in the proper overall position, namely:

This chapter concerns the requirements formulation phase.

Unlike everything else we’ve discussed, we’re not writing code here,
or even figuring out a UML design. We’re simply describing what
our object-oriented program needs to do, when it is ultimately built.

“What” vs. “how”

The dichotomy between “what” and “how” runs deep through hu-
man thought, well beyond just software development. Think of a
military hierarchy in wartime. The general may decide that what
needs to happen in a particular campaign is to cut off enemy access
to a water source, and focus troops in the western flatter region
where the enemy is vulnerable. The Lieutenant Generals who work
under him, however, need to take those “whats” and figure out
“how” to make each of them happen. The Lt. Gen. assigned to the
water source task may decide that a quiet amphibious landing up-
stream from the source, simultaneously with a small group of shock
troops at water’s edge as a distraction, is just the ticket. So that’s
what this Lt. Gen. decides to do. Each of his or her Colonels then
need to unpack those overarching plans to the next level and decide
how to implement them. And so forth. Every level of the hier-
archy is a “what” for the higher-up and a “how” for the underling.
The same phenomenon is seen in the Org Chart for a business, a
government agency, a sports team, or even a family.

Another pair of terms for this phenomenon are strategy and tac-
tics. Think of “strategy” as the “what,” and “tactics” as the “how.”
To continue the military analogy: sending a group of aircraft to in-
tercept an incoming bomber squadron might be considered a strate-
gic decision. One of those aircraft banking left and then gaining
altitude in a flanking maneuver, however, is a tactical move. And
this dichotomy persists throughout all levels of the plan: some-
thing that’s a “what” to a major becomes a “how” for his captain

272 CHAPTER 17. USE CASES

to solve, and “what” his captain decides gets fleshed out in “how”
his lieutenants decide to operationalize it, etc.

By the way, you’ll sometimes hear people complain about “mi-
cromanaging.” Here’s my definition of the term: when someone
“above” you in the hierarchy is supposed to tell you what to do, but
instead starts telling you how to do it, they’re micromanaging you.
It’s a chafing feeling, and can quickly lead to resentment, because
your colleague is really overstepping their bounds. They should be
outlining what the requirements of the task are, and deferring to
you on how specifically to make that happen. On the other extreme
are managers who fail to completely specify the “what,” leaving you,
as the “how” person, with insufficient information about how you
might proceed. A well-functioning organization is one where every-
one understands and honors these boundaries and is thus able to
carry out a complex task composed of many interlocking levels.

17.2 Use Cases

Use Cases are one methodology for capturing3 requirements. Rather
than describing the entire system in a block of text, as in our exam-
ples on p. 239 and p. 254, we isolate and identify individual units
of functionality that a user of the system has available to her, and
describe each one. Each of these units of functionality is called a
use case (pronounced “YOOS case,” not “YUZE case.”)

Here are some important terms:

Actor: A role that a person plays when interacting with a system.

Use Case (UC): A function of the system that yields a result of
value to an Actor.

UC description: A detailed specification of exactly what happens
when the Actor executes the use case, including any important
variants.

3“Capturing” means “identifying and then precisely describing.”

17.2. USE CASES 273

Figure 17.2: A Use Case diagram for an online bookseller.

UC diagram: A mostly-useless picture showing which Actors are
intended to perform which UCs. Can be used to impress
managers, and makes a good cover page.

You can see that I’m slightly cynical about that last item. Un-
like other UML diagrams we’ve seen (class diagrams and sequence
diagrams), a Use Case diagram contains almost zero information.
That’s because the UC descriptions – which are the important part
of all this – tell you everything the diagram tells you, and much
more.

For the record, though, Figure 17.2 presents a UC diagram for an
online bookseller (like Amazon). The large rectangle represents the
system boundary; in other words, the stuff inside the box is func-
tionality present inside the software system being described. Actors
are shown as stick figures, and UCs as ovals. A line from the former
to the latter means “a person acting as this role can execute this
use case.” The “<<uses>>” arrows (with an open-triangle, like in-
heritance on a UML class diagram) indicate a sort of “subroutine”
relationship: in this case, the use case “Buy book” will entail run-
ning the “Add item to card,” “Checkout,” and “Update inventory”
use cases.

274 CHAPTER 17. USE CASES

About actors

There’s a couple things worth mentioning about Actors. For one,
different actors can sometimes execute the same UC. In our dia-
gram, both the Anonymous User and Registered User actors can
“Search for books,” and both the Registered User and the Critic
can “Login.” This is clear from the diagram, and easy enough to
understand. The second thing worth mentioning, however, is not
explicit on the diagram, but is equally important: an actor is a
role that a person may play, not the person herself.

What I mean is this. Someone might look at Figure 17.2 and say,
“wait a minute – mightn’t a Critic who writes book reviews also
sometimes buy books on the site? Isn’t it limiting to disallow Crit-
ics from buying books?” The answer is: the same human being
may indeed sometimes review books, and sometimes buy books.
But she is acting in different roles when she does so. When this
person writes a book review, she is in the role of a “Critic” actor;
when she makes a purchase, she is acting as a “Registered User”
actor. So the Actors simply represent the various different capaci-
ties in which human beings can act as they use the system. There
is certainly nothing preventing a person from embodying different
roles at different times.

UC descriptions

I mentioned that UC diagrams are almost completely worthless.
Their main value-add in my experience is simply to look pretty and
make a nice-looking cover sheet for your Use Case model. Make no
mistake, the real work of the requirements phase – and the impor-
tant information it reveals – is found in the Use Case descrip-
tions.

Each UC has a written description that narrates exactly how the
actor and the system interact when that function is carried out.
Often a requirements team will use a Use Case template, which
is nothing more than a form with required fields to fill in. If you
Google for Use Case templates, you’ll find a zillion of them, most
of them far too complex (IMO). Here’s the one I like to use:

17.2. USE CASES 275

Name:
Synopsis:
Actors:
Precondition(s):
Sunny Day flow:

1.
2.
3.

Rainy Day #1 flow:
1.
2.
3.

Rainy Day #2 flow:
1.
2.
3.

Here’s what goes in each field:

Name: The UC’s name. Use Cases should always be verb phrases,
never nouns or other parts of speech. They’re titled according
to something the actor does.

Synopsis: A concise (one-or-two sentence) description of the func-
tion. This is mostly necessary so that when someone’s flipping
through a stack of UC descriptions, they can quickly orient
themselves and find the one(s) they’re looking for.

Actors: The names of the Actors who are intended to use this
functionality.

Precondition(s): A short list of assumptions that must be true
before this UC can even apply. This helps orient the reader
as to where in the grand scheme of things this functionality
is expected to take place.

Sunny Day flow: Each of a UC’s “flows” is a step-by-step narra-
tive of what takes place. The “Sunny Day” flow (also some-
times called the “primary flow”) describes what happens when

276 CHAPTER 17. USE CASES

all goes as expected. There is almost always only one Sunny
Day flow, because there’s typically only one “way” things can
go right.

Rainy Day flow(s): The Rainy Day flows explain exceptional con-
ditions or errors; in other words, what the system should do
when things don’t go as expected. There are often several
Rainy Day flows, since there’s often several different ways
things can go wrong.

Figure 17.3 gives an example Use Case description for the “Regis-
ter” UC mentioned before. Note especially the level of detail pro-
vided. The description avoids mentioning User Interface specifics
(like where the button is positioned, or what color it is) but it does
specify visual details where they impact the functionality, such as
“dummy characters” in the password. The line between specify-
ing too little and specifying too much is admittedly a bit fuzzy at
times, and every development team settles on their own preferred
practices.

The general rule is: the UC flows must be specified in enough detail
that the design & programming teams know what they’re supposed
to make the system do. Inevitably there will be details that the
implementers have to supply themselves, but the goal is to keep this
to a minimum. The UC descriptions, in essence, form a contract
between the requirements and design/programming teams.

Note also the pointers embedded in the flows: “See Rainy Day #1,”
“Include Login,” and “Go to Sunny Day step 3.” These mean just
what you think they mean. The first and the last of this triad
direct the reader to jump to a different step. The second one refers
to another Use Case entirely, specifying that when this UC ends,
the appropriate next experience for the actor is the Login UC’s
sunny day flow.

Tips for good Use Case descriptions

The most important general rule for Use Case descriptions, as with
all other documentation, is this: spend time writing useful in-

17.2. USE CASES 277

Name: Register
Synopsis: An anonymous user creates a unique identity with
the system, to be used to identify this user in this and future
sessions.
Actors: Anonymous User
Precondition(s): The user is not logged on.
Sunny Day flow:

1. From the main bookseller.com home page, a “Create
login” button is visible.

2. The user clicks this button.
3. The user is presented with a “create a user id” page,

and is instructed to enter (and re-enter, for accuracy)
their e-mail address and password.

4. The user enters their e-mail address and password,
re-typing their e-mail address a second time to en-
sure accuracy. (See Rainy Day #1.) When entering
text in the password field, a dummy character appears
for each keystroke rather than the actual character
pressed.

5. The system presents a “successful registration” page.
<Include Login>

Rainy Day #1
1. If the e-mail addresses do not match, the system

presents a message indicating this, and prompts again
for e-mail address and password. <Go to Sunny Day
step 3.>

Figure 17.3: A sample Use Case description.

278 CHAPTER 17. USE CASES

formation, not doing busy work. A lot of students find writing
Use Cases a drag, because they think they need to force themselves
to write a bunch of text documenting what’s obvious anyway. Don’t
do that. Documentation is expensive (in terms of person-hours) to
write, to read, and to maintain. So don’t over-generate it. Make
all your documentation crisp, information-rich, and to the point.
Make it as long as it needs to be, but no longer.

Here are some other guidelines:

• Never use the name of a class, method, or variable in a UC
description. Remember: UCs are for requirements, not design
or implementation.

• Avoid phrases like “etc.,” “for example,” and “and so on.”
Those are almost always indicators that you are postponing
making important requirements-level decisions until the de-
sign phase. The requirement phase is where you want to nail
those down. (I remember a student team who was working
on a social network project, and in one of their Use Cases
they wrote, “the user’s profile is displayed, containing their
username, password, hobbies, relationship status, etc.” I told
them, “the design team – who you’ll be passing these require-
ments on to – doesn’t know how to write code for ‘etc.’ !”)

• Make your Use Case descriptions only as long and as detailed
as they need to be, no more. (And this will vary widely
between Use Cases.)

• Focus on the user’s intent. Why is she using this functional-
ity? What benefit does she gain?

• Identify, and be explicit about, what information is passed
back and forth between the user and the system.

• Note that Rainy Day flows must specify what the system is
supposed to do in each exceptional case, not just that an ex-
ceptional case may happen. (For example, it is not sufficient
for a Rainy Day flow to say, “Rainy Day #1: the two pass-
words the user typed don’t match. End of Rainy Day #1.”
It’s true that you have identified a possible error case that
might occur. But the purpose of the Rainy Day flow is to tell
the implementation team how they should handle that case.

17.3. A MORE COMPLEX EXAMPLE 279

17.3 A more complex example

I’ll end this chapter with one more Use Case description that isn’t
quite as obvious as the “Register” example. This one is for a text-
based adventure game like the classic Zork games of the 1980’s.
Players type text commands (like “north” or “take pickaxe” or “ex-
amine painting”) to specify what action they want to take in a
virtual world, and read descriptions of the rooms, items, and other
things they encounter.

Figure 17.4 gives a bad Use Case description for a combat scenario.
It is bad because it is underspecified: many questions will remain in
the minds of the design & implementation teams after reading this
puzzling description. I claim that Figure 17.5, on the other hand,
adequately tells the reader what the system should do, in sufficient
detail so as to be implementable. See if you agree.

280 CHAPTER 17. USE CASES

Name: Duel with monster

Synopsis: A combat sequence is initiated between the player and
one hostile NPC (non-player character) in the current room.

Actor: Player
Sunny Day flow:

1. The player begins the combat by attacking the monster.
How does the player do this? What command(s)
will trigger a combat?

2. Either the adventurer or the monster is victorious, based
on the combatants’ levels, strength scores, and weapons.
How is this decided? How are the various statis-
tics combined to determine a winner? Is there
any randomness involved? Is the entire combat
resolved in a single step, or are there multiple
attacks before a death?

3. The player can attempt to exit the combat at any time by
typing “flee.” The phrase “at any time” implies
the action is ongoing, with punctuated intervals.
But this is not explained. The word “attempt”
suggests that the flee attempt might not be suc-
cessful. How is this determined?

4. If the adventurer dies, the game ends. What does the
user experience here? Is there an option to
restart at a previous save point? Is there an exit
message? Does the system just crash?

5. If the monster dies, the system prints an appropriate mes-
sage and the player scores points for the combat. What is
the message? How many points? Are they told
that they scored a certain number of points, or
is this just present in their total the next time
they ask for their score?

Figure 17.4: A bad (underspecified) UC description for the combat Use
Case, with unresolved questions.

17.3. A MORE COMPLEX EXAMPLE 281

Name: Duel with monster

Synopsis: A combat sequence is initiated between the player and one hostile NPC
(non-player character) in the current room.

Actor: Player

Preconditions: The player is currently in a room with an NPC who is “hostile”
(as opposed to “friendly.”) The NPC is currently still alive – i.e., its “number of
wounds” is less than 3. The player is in possession of an item which has an attack
event associated with one of its item-specific commands.

Sunny Day flow:
1. The player begins combat by typing “attack NPCname”.
2. With equal probability, the system randomly decides which party will be

successful in the attack: the adventurer, or the NPC.
• If the player is chosen, one of the following colorful messages

is displayed: “you hit the nameOfNPC!” or “the nameOfNPC is
wounded!” The NPC’s number of wounds is incremented by 1.

• If the NPC is chosen, one of the following colorful messages is
displayed: “the nameOfNPC sneaks in an attack!” or “pain
rushes through your body!” The adventurer’s number of wounds
is incremented by 1.

3. If neither the adventurer’s nor NPC’s number of wounds is equal to 3, the
player can attack again (return to step 1) or issue another command instead.
In the latter case, the wound counts remain for both adventurer and NPC
(they are not reset back to 0).

4. If the adventurer’s wound count is equal to 3, the system prints “thou art
slain!” Go to <Finish game>.

5. If the NPC’s wound count is equal to 3, the system prints “the nameOfNPC
is dead!” A new item called “nameOfNPCCorpse” is now present in the
room. The adventurer’s score is increased by 20.

Rainy Day #1 flow:
1. The player terminates the combat by entering a command other than an

item-specific command associated with an attack event.
2. In this case, play resumes as though the adventurer had never entered com-

bat – any legal command can be entered with its usual effect. The wound
counts of both combatants, however, are maintained indefinitely.

Rainy Day #2 flow:
1. The player attempts to surrender to the monster by typing “surrender.”
2. The attempt to surrender is denied. The system prints the message

“nameOfNPC takes no prisoners!” and the adventurer dies. (Go to
Sunny Day step 4.)

Figure 17.5: A good UC description for the combat Use Case.

Chapter 18

Documenting an API

“API” – which historically stands for “Application Programming
Interface” – is one of the dumber acronyms you’ll encounter. And
worse, it’s commonly used to mean two different things: (1) a set
of classes (and their methods) which a programmer could make use
of in their own code, and (2) the documentation describing those
classes/methods.1

In common lingo, people speak of “programming to an API,” which
means “writing some code which conforms to those documented
classes.” Every time you’ve used an ArrayList or a Scanner, in
fact, you have been doing this. Instantiating such objects, calling
methods on them, and (importantly) reading the documentation at
https://docs.oracle.com/javase/8/docs/api/ to find out how
they operate is all part of leveraging the built-in Java API for your
own purposes.

These days, when we talk about using an API, we often mean writ-
ing code that connects over the Internet to some publicly-available
service or database of information. Nearly every major Internet
player these days – Google, Youtube, Instagram, Flickr, eBay, Twit-
ter, Dropbox, Spotify, Amazon, data.gov, GeoDB cities, etc. – has

1By the way, the term “API” isn’t used only for object-oriented software.
One could write some old-school procedural code (with functions and data
structures, rather than encapsulated classes and methods), describe it, and call
that an API as well.

283

https://docs.oracle.com/javase/8/docs/api/

284 CHAPTER 18. DOCUMENTING AN API

a publicly-accessible API. This allows you to write code (in any lan-
guage) to connect to it and query it for information, perform com-
mands, make purchases, and so forth. Browse dev.twitter.com to
get an idea of the rich functionality available to anyone with the
technical savvy to understand and exploit an API.

It’s an interconnected, collaborative world. Developers rarely write
all the code themselves anymore on a little isolated island. Instead,
they share code for others to use, and take advantage of what’s
been shared with them. If you can figure out how to effectively do
that, you’ve increased your programming potential a hundredfold.

18.1 The importance of good docs

Now in order to make it possible for other developers to use the code
you so painstakingly wrote, it must be documented in a way that
is clear, complete, and unambiguous. To appreciate the importance
of this, I want to lead you in a thought experiment.

First, pretend you’re back in the 1990’s, a glorious time to be young
and alive. In particular, pretend that GPS and cell phones are not
yet commonly available. (Believe it or not, this was true in the
recent past.)

Let’s suppose it’s Friday night, and you’re going to a party at the
apartment of your acquaintance Biff. Biff lives up in North Stafford,
and you’ve never been to his place before. Luckily, your close friend
Filbert is also going to the party, and he’s been to Biff’s on many
occasions. You’re picking him up at 8pm.

Consider the following two scenarios.

Scenario A: You’ll pick up Filbert (and possibly one or two oth-
ers), and drive together to Biff’s apartment.

Scenario B: Filbert calls you at the last minute and says that
he’s getting a ride with somebody else. He gives you written
directions to Biff’s, however, so that you can get to the party
on your own.

dev.twitter.com

18.1. THE IMPORTANCE OF GOOD DOCS 285

My question: in which of the above two scenarios are you more
likely to successfully arrive at the party without getting lost? Or
are both cases equally likely?

The careless thinker might at first conclude that the two cases are
equally likely. After all, they both depend on Filbert’s knowledge of
how to get to Biff’s. In one case, Filbert’s verbalizing the directions
as you drive, and in the other case, he’s laying them all out for you
in advance. But theoretically, as long as Filbert knows how to get
there, you’ll be successful in both scenarios.

Theoretically. But in the real world, as everyone knows, it usually
doesn’t work like that. In scenario A, with Filbert in the passenger
seat, you have the chance to interactively ask about every inter-
section and every turn. But in scenario B, Filbert had to specify
everything perfectly in advance. He had to describe the route with
no errors, since there would be no chance to make corrections en
route. He had to anticipate every question you might have, since
he wouldn’t be there to answer them. That’s a lot of pressure on
Filbert to give good directions.

Consider the following very realistic possibilities:

• Filbert wrote “left” when he meant “right” in step 3 of the
directions because he’s human.

• Filbert just plain forgot step 5 of the directions because he’s
human.

• When he wrote, “turn left at the next opportunity,” he meant
“at the next intersection,” and assumed that would be obvious
to you. However, you (quite naturally) thought he meant “the
very next possible left,” which was down a side road.

• A road is closed, or there’s a traffic jam, and you need to
improvise in order to make it to the party on time.

• Etc.

You can think of a dozen more. In all these cases, having Filbert
with you in the car allows you to clarify ambiguities, fill in omis-
sions, ask questions as they arise, and change course in response to

286 CHAPTER 18. DOCUMENTING AN API

unexpected circumstances. With the written directions, you have
none of those options. Put another way, Filbert isn’t even at your
disposal in Scenario B: your only asset is Filbert’s brain dump, as
he was conceiving it at 6:13pm.

And by the way: most people are pretty bad at giving directions.

Collaborating with someone you’ll never meet

In case the above analogy isn’t plain, Scenario A corresponds to a
software development team where your teammates are just down
the hall. They’re just an email or a Slack away. You can ask ques-
tions, report bugs, or even request alterations as the need arises.
The pressure is off, as far as documentation is concerned. In fact,
why even bother trying to document everything exhaustively in ad-
vance, if your teammates can ask focused questions in real time?

Scenario B corresponds to you using a public API. The instructions
written by a developer you will never meet are your one and only
chance to comprehend how to use the thing. Those instructions
had better be darned good, because there is no chance to ask ques-
tions on the road. They’d better clearly and exhaustively contain
everything you’re likely to want to know.

By the way: most people are pretty bad at writing clear and com-
plete documentation. The good news is that it’s possible to improve
this through discipline, practice, and painstaking effort.

18.2 JavaDoc: mechanics

One of Java’s supplementary (but in retrospect, killer) features
was the javadoc utility shipped with the JDK. The idea behind
JavaDoc was to combine two previously incompatible aspects of
code documentation. The key question is: where should the docu-
mentation be kept?

On the one hand, it seems that the English text describing how to
use a software component (like a class, method, or package) ought
to be maintained right alongside the code itself, in the source file.
This promotes keeping the code and the docs in sync.

18.2. JAVADOC: MECHANICS 287

On the other hand, there are clearly many advantages to presenting
the documentation in a rich, interactive, point-and-click hypertext
format. Then the user can browse it non-linearly, read it with pretty
formatting, avoid having to step around the code itself to read the
next bit of documentation, etc.

So we seem to have two conflicting desires: to keep the documen-
tation close to (and embedded in) the code, and to author it in a
more flexible (and ideally, web-browser-accessible) way outside the
code.

JavaDoc’s innovation was to say: “go ahead and store the documen-
tation in the .java files themselves, to promote consistency. But
we’ll create a separate tool that can examine the .java files and
extract the documentation portions. The tool will then assemble
those into a mini-website that other programmers can conveniently
browse.”

To accomplish this, we use a special syntax to denote “JavaDoc
comments.” Recall that one style of comment in Java is the multi-
liner:

/*
* This is a regular Java comment, and will be ignored by javac.
*/

JavaDoc comments are the same, except that they have a double
asterisk at the beginning:

/**
* This is a special JavaDoc comment, which will be ignored by
* javac, but will be extracted by javadoc.
*/

You can place JavaDoc comments in three places:

• Immediately before a class definition, to provide a description
of that class, and hints as to its usage.

• Immediately before a method definition, to describe what the
method does, how to call it, and what will happen in excep-
tional conditions.

288 CHAPTER 18. DOCUMENTING AN API

• In a special file called “package.html”, which will be placed
in the source directory for a package, if you’re using Java
packages.

The javadoc utility will automatically identify and extract the En-
glish text stored in JavaDoc comments in any of these three places,
and assemble them into HTML files in the appropriate way.

Markup and tags

There are also a couple of cosmetic options you can take advantage
of in JavaDoc comments. First of all, any valid HTML tag can be
used directly in the comment, and will be formatted appropriately
in the final mini-website. If you’re familiar with HTML tags like
“” (for boldface), “<tt>” (for a monospace, typewriter font) or
“” and “” (for bulleted lists), you can use them to style
your text.

Second, there are special tags called “JavaDoc tags” that can be used
to set apart certain meta-information and put them in a special
place in the final HTML product. The most important ones are
shown in Figure 18.1, though there are others. Each development
team acquires their own culture, policies, and procedures that call
for different pieces of information to be highlighted.

A representative example showing many of these tags is in Fig-
ure 18.2, the HTML for which appears in Figure 18.3.

Generating the mini-website

To actually generate the HTML in Figure 18.3, you’ll need to run
the javadoc command with some options. Generally, if I’m running
on a Google Cloud instance, this is how I run it:

$ sudo javadoc -d /var/www/html -author *.java

The word “sudo” at the start of this sentence means “please al-
low me to execute the following command as the root user of the
system”; i.e., the super user who has all privileges. The reason

18.2. JAVADOC: MECHANICS 289

Tag/syntax Location Purpose

@author Jezebel class

The primary or original author of the
class. Using the first name, username,
or initials of the author are common
choices.

@param name description method

What one of the arguments to the
method means. “name” is either the
name or the type of argument. “de-
scription” should begin with a lower-
case letter and end with a period.

@return description method

How the return value of the method
should be interpreted. “description”
should begin with a lower-case letter
and end with a period.

@throws type description method

What type of exception might be
thrown from the method and how it
should be interpreted. “description”
should begin with the word “if” and
end with a period.

{@link className} anywhere Create a clickable hyperlink to the
class named.

{@link className#method} anywhere Create a clickable hyperlink to the
method named.

@deprecated explanation class /
method

Mark this class or method as old and
not to be used by new code. (Still sup-
ported temporarily for older code, but
intended to be phased out.)

Figure 18.1: Some commonly-used JavaDoc tags, and their meanings.

this is necessary is that the directory /var/www/html, which this
command says to write content in, is by default not writeable by
ordinary mortals. You have to temporarily become Superman in
order to write to it, which will require typing your password to
confirm you’re really Clark Kent.

The “-d /var/www/html” bit is a command option with a param-
eter. The -d stands for “directory” and it says that the HTML
that javadoc generates should be written to this directory. It’s a
system-specific thing; on Debian Linux (which I install on Google
Cloud) this is the directory that Apache Web Server will look in to
serve up content to browsers that connect to it. (More on that in
a moment.) In other contexts, like if you have a user directory on
a shared machine that you don’t have control over, you can often
substitute something like “-d /home/yourusername/public_html”
which will write the content to your account’s own directory for

290 CHAPTER 18. DOCUMENTING AN API

/**
* A <tt>Ballplayer</tt> represents a historical baseball player and
* the composite statistics over his career. Each <tt>Ballplayer</tt>
* object is associated with one {@link Team} even if he played for
* multiple teams in his actual career.
* @author SD
*/

public class Ballplayer {
...
/**
* Constructs a new <tt>Ballplayer</tt> object with "empty" stats
* (<i>i.e.</i>, all set to their initial, default values.)
* @param name the real (no nicknames) first and last name of the
* player.
* @param uni the most well-known uniform number he played under.
* @param team the mascot name (not city) of the {@link Team} he
* is most commonly associated with.
* @throws NoTeamException if the <tt>team</tt> parameter does not
* correspond to the mascot name of any known {@link Team}.
*/

public Ballplayer(String name, int uni, String team)
throws NoTeamException {
...

}

/**
* Returns the player's career batting average, measured as total
* hits divided by total "at bats." If the number of "at bats"
* is zero, returns 0.0 rather than give a divide-by-zero error.
* @deprecated This method should be eschewed in favor of more
* recent stats such as {@link Ballplayer#getOnBasePercentage}
* and {@link Ballplayer#getSluggingPercentage}.
* @return the batting average on a 0.0-to-1.0 scale.
*/

public double getBattingAvg() {
...

}
}

Figure 18.2: HTML and JavaDoc tags in action.

18.2. JAVADOC: MECHANICS 291

hosting HTML content to the world.

The “-author” part of the command says “yes, please do extract
@author information and include it in the HTML. (The default is to
not do that, which I’ve never understood.) Semi-related: by default
javadoc only includes the public classes and methods in the HTML
it generates, since JavaDoc is normally used to document public
APIs. Sometimes there are reasons to produce JavaDoc content for
everything in the class files – private, public, or anything else – and
to do this you merely need to include a “-private” option here as
well.

Finally, the “*.java” means to generate HTML for all the Java
source files in the current directory. If you’re using packages, you
can instead replace “*.java” with a sequence of fully-specified pack-
age names that can be located via the CLASSPATH variable. Note
that you do have to tell javadoc to generate the entire mini-website
at once; if you make just a change or two to one .java file, you can’t
just regenerate the HTML for that one because then the entire mini-
website will consist of nothing but that one class.

Starting the Web server and connecting

After all the JavaDoc’s mini-website content has been generated,
you can access it via your browser. You can find out whether
Apache Web Server is running by typing:

$ sudo systemctl status apache2

at the command line. If it gives a message like “whoa, apache2 not
installed,” then you’ll need to install it via:

$ sudo apt install apache2

If it says it’s not currently running, then you’ll need to start it via:

$ sudo systemctl start apache2

292 CHAPTER 18. DOCUMENTING AN API

Lastly, when this seems to be working, figure out what the exter-
nal IP address is of your machine (it’ll be four numbers, each in
the range 0-255, set apart by periods; for example, 35.237.255.14).
Then, you can point your browser to http://thatIPAddress and
you should be able to see your prettily-formatted HTML website
like in Figure 18.3.

Firewall settings

If you can’t reach your JavaDoc site via the above URL, your prob-
lem might be that your Google Cloud firewall is blocking the traffic.
At the time of this writing, here’s how to fix that problem:

1. Go to https://console.cloud.google.com/networking/
firewalls/list.

2. Click “Create firewall rule.”
3. Give it a name like “allowhttp”.
4. Choose “All instances in the network” from the “Targets”

drop-down.
5. Make sure direction is “Ingress” and action is “Allow”.
6. For “Source IP ranges” put “0.0.0.0/0”.
7. Click TCP under “Specified protocols and ports”, and put in

80.
8. Click “Create” to create the rule.

18.3 JavaDoc: content

Okay, so that’s all the minutiae of how to get the JavaDoc syntax
right and generate the website. You have to know this, but it actu-
ally isn’t the important part. The truly important question in all
this is less-easily defined: how to actually write quality documenta-
tion that will communicate effectively to programmers I may never
meet?

http://thatIPAddress

18.3. JAVADOC: CONTENT 293

Figure 18.3: The generated HTML for the code in Figure 18.2.

294 CHAPTER 18. DOCUMENTING AN API

The answer is at once super simple and extremely nuanced. Here
is the one and only rule that should guide your API documentation
process:

“Put yourself in the shoes of a Java developer who
has never seen your code before. Write whatever
that person would need to know in order to use your
code properly.”

You might be surprised how much students (and professionals)
struggle implementing this advice. It turns out that the human
brain has a very difficult time envisioning what it’s like to not al-
ready know something. “Putting yourself in someone else’s shoes”
just doesn’t come naturally, it seems. Nevertheless, you must do it,
otherwise your documentation will be pretty useless.2

Class documentation

Classes are the easier of the two main components (the other being
methods) to write JavaDoc for. That’s because the purpose of
class JavaDoc is mostly to orient the reader to the class’s purpose
and what it collaborates with. Still, it’s certainly possible to leave
important information undefined or ambiguous.

Let’s take a look a bad attempt to document the Team class from
the baseball simulator example, followed by some better ones.

2As an aside, this same mantra – “put yourself in the shoes of someone
who doesn’t already know” – is the essence of another common activity: teach-
ing. With few exceptions, I’ve discovered that a good teacher is one who can
mentally put themselves in the shoes of their students, and remember what
it was like to not already know the material. Conversely, bad teachers are
inevitably poor at this exact skill, which is why it can sometimes seem as if
they’re assuming you already possess the knowledge before they began to teach
it!

18.3. JAVADOC: CONTENT 295

First (bad) attempt:

/**
* A <tt>Team</tt> represents a group of {@link Ballplayer}s
* who play baseball together.
*/

public class Team {
...

}

This JavaDoc succinctly sums up what the Team class is for, but
I claim it leaves out at least two important pieces of non-obvious
information. “Non-obvious” is the key word here: the stuff that
would be obvious to a reader isn’t particularly important to docu-
ment. It’s the things that aren’t clear that deserve attention.

One thing this JavaDoc is missing is the motivating reason for using
the class. A fellow developer might read this and say, “okay, a
Team is a group of Ballplayers, but if that’s all it is, I’ll just
use ArrayList instead, since I’m more familiar with it.” It’s a fair
point: our JavaDoc hasn’t made the sale as to why it’s worth using.

Okay, so why is it worth using? At least two reasons are (1) it
can be used as input to the Simulator class, in order to simulate a
virtual ballgame, and (2) it has useful methods on it that provide
summary statistics for the entire team. So let’s say that:

Second (better) attempt:

/**
* A <tt>Team</tt> represents a group of {@link Ballplayer}s who play
* baseball together, and can compute summary statistics about the
* group's past performance. Two <tt>Team</tt> objects are required to
* run a single-game simulation (see {@link Simulator#simSingleGame}.)
* Methods like {@link Team#getTeamBattingAverage()} and
* {@link Team#getWonLossRecord()} can be called to get aggregate
* information about the team's performance.
*/

public class Team {
...

}

296 CHAPTER 18. DOCUMENTING AN API

Better. And now for the second thing I found missing. One crucial
aspect of documentation to include – and one that is easily over-
looked – is the assumptions the developer was making when she
wrote the class, but which a user of the class might not make. In
this case, a glaring question is: “can a Ballplayer be a member
of more than one Team?” Frank Robinson, for instance, was a Hall
of Fame outfielder for both the Cincinnati Reds and the Baltimore
Orioles. What would happen if I attempted to add him to two
different Team objects? Is it perfectly okay? Is it forbidden, but
not checked by the code? Or will adding him to the second object
trigger a run-time exception?

It’s imperative that we know, because all three of the above be-
haviors are reasonable. In order to use this Team class, we need to
know which one is the true behavior.

So let’s add that information in, together with an author tag, and
call it done (at least for now):

Final attempt:

/**
* <p>A <tt>Team</tt> represents a group of {@link Ballplayer}s who
* play baseball together, and can compute summary statistics about
* the group's past performance. Two <tt>Team</tt> objects are required
* to run a one-game simulation (see {@link Simulator#simSingleGame}.)
* Methods like {@link Team#getTeamBattingAverage()} and
* {@link Team#getWonLossRecord()} can be called to get aggregate
* information about the team's performance.</p>
*
* Note that a <tt>Ballplayer</tt> can be a member of <i>any number</i>
* of teams. (This will happen if a player was traded during his
* career, for instance.) In this case, the summary statistics for each
* <tt>Team</tt>, and its performance in a simulation, will take place
* as though that player's entire career stats applied to <i>each</i>
* of his teams.
*
* @author Stephen
*/

public class Team {
...

}

18.3. JAVADOC: CONTENT 297

Apparently, Stephen has decided to write the Team code to delib-
erately allow a ballplayer to be a member of more than one team.
This JavaDoc also spells out a possibly unexpected caveat of this
decision: the system doesn’t separately keep track of which stats a
player accumulated on which of his teams, but simply lumps them
all together in a single Ballplayer. This has an important impact
on what to expect from the simulator’s behavior, if (for instance)
a player was traded late in his career. If you have an aging Ricky
Henderson on your L.A. Dodgers squad, that team is going to ben-
efit from all Ricky’s legendary base-stealing, even though almost
all of it occurred with different teams earlier in his career.

The point is that this clarifies an important case that perhaps
wasn’t obvious at first. In general, it’s really easy to think of only
the “sunny day” scenarios, and to write the documentation describ-
ing what is normally pretty obvious anyway. It’s harder to step
out of the box and recognize what cases aren’t so obvious – in this
example, the multiple-team-players question – and give the user of
the class guidance on what to expect.

Method documentation

Method documentation is a higher-stakes affair than class docu-
mentation, simply because there are more details to remember and
to get right. It’s not often that a fellow developer gets off in the
weeds about what a class is even used for; but it’s not rare for them
to code to a method incorrectly because the JavaDoc is spurious or
misleading.

Taking again the baseball example, let’s look a bad attempt to
document the .getOPS() method.

First attempt:

/**
* Return the player's OPS.
*/

public double getOPS() {
...

298 CHAPTER 18. DOCUMENTING AN API

This is an example of wasting time typing. The programmer might
as well have typed nothing at all, since “returning” was implied in
“get...” and OPS remains undefined. Let’s try again.

Second attempt:

/**
* Return the player's career OPS (On-base-plus-slugging)
* statistic, defined as the player's on-base percentage
* plus his slugging percentage.
*/

public double getOPS() {
...

This is much more useful, at least, since it defines for a reader
who may not be familiar with the more advanced Sabermetric stats
what “OPS” even is. Still a few things missing, though. For one,
the on-base percentage and slugging percentage are both defined on
a 0.0-to-1.0 scale rather than a 0-to-100 scale, and so “percentage”
is a very misleading (incorrect, actually) word. We don’t want to
move away from standard baseball conventions, so we’ll keep the
terms but then make the scale clear in a note in the JavaDoc.

Speaking of standard baseball conventions...all the stats like batting
average, slugging percentage, OPS, etc. are traditionally reported
to exactly three decimal places. We say “Simpson is hitting .325,”
not “Simpson is hitting .3257886442.” Another question that arises,
then, is: do methods like .getBattingAvg() and .getOPS() return
a figure rounded to the three decimal places of convention, or do
they return hits-divided-by-at-bats (or whatever) with all possible
precision? One can see advantages to doing it either way; the point
here is that the JavaDoc must specify which it is.

Whether to document here what “on-base percentage” and “slugging
percentage” themselves are is a judgment call. If there are other
methods on the Ballplayer class specifically for those two stats,
then it’s probably better to link to them in the .getOPS() JavaDoc
rather than duplicate the text.

18.3. JAVADOC: CONTENT 299

Finally, you always have to ask yourself “what corner cases are
there?” What scenarios might unfold that are unusual and need spe-
cial treatment? Here, the important one turns out to be a ballplayer
with no at-bats. In this case, both his on-base percentage and his
slugging percentage will have a denominator of zero, which is an
illegal mathematical operation. (“Zero hits divided by zero at bats”
is not zero, but undefined.) Traditionally, players with no batting
chances are reported as having a .000 batting average, slugging per-
centage, on-base percentage, etc., so it makes sense for our method
to do that here. When it does, though, it’s strictly speaking going
beyond the definition of “successes divided by attempts” that all
these averages are based on.

Answering all these questions adequately, then, leads to this JavaDoc:

Final attempt:

/**
* Return the player's career OPS (On-base-plus-slugging) statistic,
* defined as the player's on-base percentage plus his slugging
* percentage. On-base "percentage" is computed on a 0-to-1 scale,
* not 0-to-100 (and slugging "percentage" is similar, though it can
* be as high as 4.0 (all home runs)), so this method's return value
* should not be interpreted as a "percentage" either.
*
* Although OPS is typically reported to three decimal places, this
* method will not perform any rounding to ensure that; full precision
* to as many decimal places as the system allows will be reported.
*
* For <tt>Ballplayer</tt>s with zero plate appearances, this method
* will return 0, not a divide-by-zero error.
*
* @return the player's career OPS statistic.
*/

public double getOPS() {
...

You may be thinking that the @return line at the end doesn’t
really add anything useful. You would be correct. I included it
only for completeness; in general, it’s fine to leave out redundant
information. Some developers like to use the “@” tags religiously,
while others like to put key information in the running text of the
JavaDoc. This is a stylistic choice, and either way is okay. The
crucial thing is that the information has to be present somewhere.

300 CHAPTER 18. DOCUMENTING AN API

You also may be thinking that it’s tough to come up with all this
stuff. You would also be correct about that. Once you see me
explain that “zero plate appearances” is a non-obvious special case,
or that it’s an open question whether the method would round to
three decimal places, you can probably say “oh yeah, we’d better
mention that detail.” Of course, the challenge is to recognize what
those details are before they’re pointed out to you.

Honestly, I can think of no way to make this easier other than (1)
practice, and (2) really truly trying to put yourself in the mindset of
a new developer. It’s hard to pretend you’re someone else – and to
momentarily, deliberately forget what you know – but it’s not im-
possible. And as I said earlier, it’s really the key to communication
of all kinds.

Important: don’t mention implementation!

The most common error (and it is indeed an error) that I see stu-
dents making when writing their method-level documentation is
including implementation details in their description.

For instance, suppose our Team class had a method called .add()
which could add a Ballplayer to the team. Here’s a very common,
but also very wrong, way to write its JavaDoc:

/**
* !WRONG! Include a new {@link Ballplayer} object in this
* <tt>Team</tt> by adding it to this object's "players"
* <tt>ArrayList</tt>.
*/

public void add(Ballplayer bp) {
...

Do you see the problem? If you’ve learned anything in this book,
I hope you do. Our documentation has seriously violated encapsu-
lation here, and of course encapsulation is the whole freaking point
of OOP.

Specifically, users of the Team class should neither know nor care
how the .add() method does its work. They should neither know

18.3. JAVADOC: CONTENT 301

nor care whether there’s an ArrayList, or anything else, involved,
let alone the name of a specific instance variable (which is “players,”
apparently). They should only be told what the method does – what
behavior to expect when it’s called.

There are two reasons for this. One, that implementation info is
simply irrelevant to clients. if I’m writing code that instantiates and
uses Team objects, I don’t need to know what its instance variables
are, or anything else under the hood. It’s a distraction. Two, if we
did reveal that information, we would be loudly advertising some-
thing that is subject to future change. Suppose we decided to store
a Team’s Ballplayers in a Hashtable instead of an ArrayList, or
in some other object entirely? It would sure be awkward if we
had baked into our public documentation the statement about “a
players ArrayList”!

Here’s a correct version:

/**
* !RIGHT! Add a new {@link Ballplayer} to this <tt>Team</tt>,
* which will thereafter use it in single-game simulations and
* include it in its aggregate statistics.
*
* Note that a <tt>Ballplayer</tt> can be a member of
* <i>multiple</i> <tt>Team</tt>s, so calling this method on one
* <tt>Team</tt> will not remove the player from any others.
*
* If the <tt>Ballplayer</tt> is already a member of this
* <tt>Team</tt>, this method will have no effect.
*
* <tt>Ballplayer</tt>s added to a <tt>Team</tt> can be later
* removed from it via the {link Team#remove} method.
*/

public void add(Ballplayer bp) {
...

The documentation is now chock-full of important information that
a client of the Team class would need to know, and shows off nothing
in the underwear drawer. The general rule here is: if something’s
private (which certainly includes instance variables) don’t mention
it in the JavaDoc.

302 CHAPTER 18. DOCUMENTING AN API

One other similar rule is this: don’t make your method-level JavaDoc
a step-by-step narration of what the method’s code is going to look
like. Again, the purpose of the JavaDoc is to specify what, not how.

18.4 How to lose a battle through bad
documentation

I’ll close this chapter – and book – with a somewhat humorous
anecdote which was nevertheless deadly serious in its ramifications.

On the eve of the Civil War’s Battle of Fredericksburg, on December
11, 1862, General Ambrose Burnside was running the show for the
Union. His northern soldiers outnumbered the Confederates almost
two-to-one, and they had had months to prepare their crossing of
the Rappanhannock river and the siege of the town. Abe Lincoln
and the other civilian leaders of the north expected a great, perhaps
decisive, victory.

Battles sometimes come down to small things. In this case, Burn-
side was so swamped with preparations the night before the battle
that he had only one hour of sleep. That may explain the quality
(or lack thereof) of his last-minute orders to his generals. Here’s an
excerpt of what he wrote to Major General William Franklin in the
wee hours of the morning:

“Keep your whole command in position for a rapid movement
down the Old Richmond Road and send a division at least to
seize, if possible, the height near Capt. Hamilton’s, taking
care to keep it well supported and its line of retreat open.”

Franklin’s reaction, upon reading this note at 4am, could be de-
scribed as: “Huh?? ”

If Burnside had had at least another few hours of sleep, he would
doubtlessly have written more coherently about what he wanted.
But without clear directions, and guided only by the above gib-
berish, Franklin couldn’t really figure out what to do. His troops

18.4. HOW TO LOSE A BATTLE 303

floundered ineffectively most of the day. This helped produce 12,653
casualties, two mortally wounded Union generals, and an unprece-
dented disaster that came perilously close to ending the Civil War
prematurely in favor of the South.

It just goes to show how absolutely crucial written communication
can be. All the armies in the world – and all the Java coding chops
in the world – will profit you nothing if you can’t effectively give
instructions on how to use them.

Index

== (double equals), 137
? : (conditional expression),

163

the 1970’s, 21, 27

absolute path, 8, 11
abstract class, 196, 199, 263
abstract method, 193, 196
abstraction, 31
accessor, 40
Accessory, 247, 259
ActionCard, 263
actor, 272
.advanceToNextPlayer(), 261
Adventurer, 100, 102
aggregation association, 97
Album, 98
alterEgos, 131
Amazon, 273
analysis, 235
Animal, 187, 193
annotation, 100
Apache Web Server, 291
API (application programming

interface), 283
Apple Computer, 268
archnemesis, 103

args, 134
arrowhead (>), 91, 94
artifact, 141, 269
association, 91, 259, 265

aggregation, 97
bidirectional, 95, 96
composition, 99
“has-a”, 94, 173
“is-a”, 174, 185, 263
many-to-many, 101
one-to-many, 100
one-to-one, 100

Attachment, 99
.attack(), 190
Auction, 257
@author tag, 289

Back to the Future, 227
backslash, 7
Ball, 121
BallplayerFactory, 207
Ballplayer, 63, 72, 107, 138,

142, 235, 288
Banner, Bruce, 181
Batman, 131
batting average, 72
Battle, 93
Battle of Fredericksburg, 302

305

306 INDEX

Bear, 187, 193
behavior, 245
.bestHitter(), 147
Betty Lou, 225, 229
bicycle, 239
Bid, 257
Biff, 284
binary format, 158
binary search tree, 32
Bird, 187, 193
BitBucket, 229
bleeding edge, 215
blueprint, 42, 89
branch, 218
buildDaTeam(), 66
Burnside, Ambrose, 302
Buyer, 257

C++, 31, 87, 122, 124, 202,
206

call (a function), 38
camelCase, 39
capitalization, 37, 39
Captain America, 181
Car, 38, 60, 79, 90
Card, 251, 260, 263
cast, 127
Cat.java, 223
catch, 81, 167
category, 36
cd, 10, 11, 14, 216
child directory, 12
Chipmunk, 197
chromosome, 193
Civil War, 302
class, 171
class, 29, 35, 42, 90, 151, 200,

245

class diagram, 42, 89, 141
.class file, 18, 219
class variable, 38, 49
“class-oriented”, 35
CLI (command-line interface),

1, 3, 215
client code, 47, 81, 107, 172
code “chunks”, 25
code reuse, 32
cohesive (highly), 29, 264
Coke, 16
collaborations, 245
collection, 94, 102

Collections class, 204
heterogeneous, 127

ColoredCard, 263
command line, 1
command-line argument, 134
commit, 17, 216, 231
commit hash, 221, 224
Comparable, 203
compiler, 18
complexity, 23, 25, 26
composition, 99
compute_sales_tax(), 25
conditional expression, 163
Configuration, 117
conflict, 232
connection, 159, 201, 258
console, 80
constructor, 40, 43, 119, 162,

166, 198
containment, 94
contract, 276
CountUniqueArrayList, 172
coupled (loosely), 29
Course, 101
Cow, 187, 193

INDEX 307

cp, 15, 134
CRC card, 245, 251, 258
.create(), 211
current directory, 7–9, 11
cursor, 162
Customer, 132
Cygwin, 3

database, 159
Database, 116
Deck, 252, 262
decoupling, 183, 208
delete, 124
delimiter, 161, 164
dependency, 26

between code chunks, 25,
28, 32

dependency association, 91,
93

lifespan, 99
logical, 25
syntactic, 25

deployment, 270
@deprecated tag, 289
design, 36, 42

design document, 270
design pattern, 115

Factory, 120, 209
Iterator, 133
Singleton, 116, 207, 248,

260
detached heads, 226
diamond

black (⧫), 99
white (◊), 97

dictionary, 131
Die, 93
diff, 222

Dimaggio, Joe, 139, 148
directory, 4, 5, 8, 9

child, 12, 215
current, 7–9, 11
home, 12
parent, 6, 12, 15
root, 7
shortcuts, 11
sibling, 12
working, 7

“discovering the design”, 236
dollar sign ($), 9
double dispatch, 261, 262
downcast, 127
Drawing, 157
DrawTwoCard, 263
.drive(), 49, 79, 82
Driver, 102
Duck, 187, 193
Dungeons & Dragons, 93
dynamic (view of memory), 89

eBay, 257
Email, 99
encapsulation, 26, 28, 32, 109,

198, 245, 264, 300
Enumeration, 133
equality, 136
.equals(), 137–139, 206
etc. in Use Case descriptions,

278
exception, 79, 164
eyeball, 142

.face(), 72, 73
Factory pattern, 120, 209
Filbert, 215, 225, 284
file, 4, 8, 9

308 INDEX

copying, 15
I/O, 159
owner, 13
renaming, 16
untracked, 219

filesystem, 4, 6, 9
filesystem extension, 4
FileWriter, 160
.fillUp(), 47
Finlayson, Ian, 2
firewall settings (Google Cloud),

292
folder, 4
“for example” in Use Case de-

scriptions, 278
.forfeitCost(), 263
forward slash, 7
forwards-compatible, 158
Franklin, William, 302
function, 31, 63, 71

vs. method, 38, 49

Game, 252, 261
Gamma, Erich, 115
the “Gang of Four”, 115
garbage collection, 121, 124
“gatekeeper” node, 27, 29
generics, 128
.genSampleList(), 151
.genStream(), 155
.getMad(), 181
.getNumChromosomes(), 193
.getOPS(), 297
getter, 40, 48
.getUpCard(), 261
Gibson, Josh, 139
git, 17, 215

.gitignore file, 219

.git directory, 216
git add, 17, 216
git checkout, 220
git clone, 230
git commit, 17, 216, 231
git config, 222
git difftool, 223
git init, 17
git log, 17, 220
git pull, 231, 234
git push, 227, 230, 234
git reset, 220, 227
git restore, 220
git revert, 228
git stash, 234
git status, 17, 216, 217
auto-merge, 231
conflict, 232

github, 229
global point of access, 117
“god class”, 264
Gosling, James, 44, 111, 203
graph, 26
GUI (graphical user interface),

1

hairball, 217
Hand, 252, 261, 262
hardware, 22, 24
“has-a” association, 94, 96, 98,

173
hash, 221, 224
Hashtable, 131
the heap, 58, 69
heapsort, 32
Hell, 29
“Hello, World!” program, 19
Helm, Richard, 115

INDEX 309

Henderson, Rickey, 297
Hero, 103
heterogeneous collection, 127
home directory, 12
Hulk, 181
hydration, 157
hyperbeam, 190

idea, 269
identicality, 136
“to implement” (to code), 47,

270
implements, 200
import statement, 42, 125
#include, 125
inheritance, 54, 165, 171, 187,

244
bottom-up (implementation),

171, 203
multiple, 202
top-down (interface), 178,

182, 189, 203, 209, 263
inheritance hierarchy, 176, 189,

206, 209, 263
initialization, 45, 198
instance, 36
.instance(), 118, 151, 207
instance variable (inst var), 37,

43, 94, 102, 120, 259
instanceof operator (evil), 190
≪instantiates≫ stereotype, 92,

93
instantiation, 36, 52, 66, 67,

117, 131, 194, 241
interface, 200
Inventory, 247, 260
IP address, 292
“is-a” association, 174, 185, 263

Item, 257
iteration

through a collection, 132
through the software life-

cycle, 270
Iterator pattern, 133

J2SE (“Java 2 Standard Edi-
tion”), 18

java (virtual machine), 18
.java file, 5, 18, 42, 158, 219,

287, 291
javac (compiler), 18
javadoc, 223, 286, 288
JDK (Java Development Kit),

18
Jobs, Steve, 268
Johnson, Ralph, 115
JRE (Java Runtime Environ-

ment), 18
JVM (Java Virtual Machine),

18

key-value pair, 131
.keys(), 133
Kindle, 3
KLOC (thousands of lines of

code), 23
KO (strikeout), 72

lazy instantiation, 119
Legos®, 32
library, 32
License, 100, 102
lifespan, 58, 62, 70, 99
Lincoln, Abraham, 302
line

dashed (- - -), 91, 200
solid (—), 94, 97, 99, 174

310 INDEX

Line, 157
@link tag, 289
linked list, 32
Linux, 1, 3, 9
LOC (lines of code), 23
LoginPane, 257
long file listing, 13
ls, 13, 14

Mac OS X, 3
main() method, 18, 135, 154
.makeNoise(), 187, 193
man, 222, 234
many-to-many association, 101
“masquerading”, 182
“maximum complexity”, 24
member function, 38
memory, 57

dynamically-allocated, 58
statically-allocated, 58

memory address, 53
memory diagram, 58, 121
memory leak, 122
Mercedez-Benz, 39, 41, 51
merge, 231
MessageListener, 257
method, 38, 72, 145

overridden, 179
pass-through, 173
vs. function, 38, 49

micromanaging, 272
Microsoft, 5, 230

Windows, 3, 6, 7
minus (-), 106
mkdir, 14, 217
modeling, 35
modularity, 26, 27, 171, 190,

248

MonsterFactory, 211
.move(), 187, 193
Movie, 149
MP3Stream, 155
multiplicity, 100
multithreaded program, 118
mutator, 40
mv, 16

names, 41, 58, 59
navigability, 95
new, 36, 52, 68, 207
New York Yankees, 142
.nextElement(), 133
.nextInt(), 162
.nextLine(), 162
NoMoreResortsException, 165
non-public classes, 111
noun, 31, 237

noun phrase, 239
proper, 238
singular, 239

NPE (null pointer exception),
65

null, 64, 66
null pointer (or reference), 64
numCars(), 40

object, 35, 41, 51, 97, 143, 171,
206

object-oriented, 21, 29, 35, 37,
51, 207

ObjectOutputStream, 158
one or more (1..⋆), 101
one-to-many association, 100
one-to-one association, 100
OOA&D, 21, 29
OOP, 21, 29

INDEX 311

option, 13, 289
override, 54, 179

pacemaker, 124
package, 105
package declaration, 42
package visibility, 106, 111, 118
package.html, 287
@param tag, 289
parent directory, 6, 12
Participant, 201
party, 284
pass (an argument), 38
pass-by-reference, 76, 129
pass-by-value, 76, 129
path, 8

absolute, 8, 11
relative, 8, 11

Peach, 183
Performance, 185
.performCardEffect(), 261,

263
persistence, 157
Person, 176, 198
phase (of software development),

269
Photo, 98
Pitcher, 72
Pizza, 94
planet, 8
.play(), 121, 154, 261
Player (Uno! example), 252,

261
Playlist, 258
PlaylistFactory, 151
plus (+), 106
Pokémon, 190
polymorphism, 189

precondition, 275
primitive type, 59, 129
.printAllStars(), 142
PrinterManager, 116
.printStackTrace(), 85, 87
PrintWriter, 160
private, 43, 106, 109, 117, 119,

291
private implementation, 29
problem domain, 257
procedural programming, 31
Prof, 198
Professor, 98, 104
Profile, 99, 157
project managers, 24
prompt, 9
protected, 106, 199
public, 42, 54, 106, 118, 291
public interface, 29, 92
pulling from a team repo, 231,

234
Purchase Order, 259
pushing to a team repo, 227,

230, 234
.put(), 131
pwd, 10, 11, 14
Python, 131

Race, 185
“Rainy Day” flow, 276
random number generation, 73,

211
Random.nextDouble(), 73, 212
RangedSpell, 93
Raspberry Pi, 3
Rectangle, 157
recursion, 65
reference variable, 59

312 INDEX

.register(), 201
relative path, 8, 11
remote access, 2
“repo” (repository), 17, 215, 224
requirements

capturing, 272
formulation, 269, 271
specification (“req spec”),

237, 243, 249, 269
ReservationSystem, 160, 203
Resort, 160, 203
responsibilities, 236, 245, 264
responsibility-driven design, 235
restore (git), 220
return, 69, 70, 80, 146
@return tag, 289
@return tag, 299
ReverseCard, 261, 263
Review, 149
roar of time, 191
role, 103, 274
root directory, 7
root user, 288
Runner, 185, 201
Ruth, Babe, 148

sameness, 136
Scanner, 126, 160
.scissorKick(), 92
scriptability, 3
segmentation fault (“seg fault”),

87
Seller, 257
separation of concerns, 184
sequence diagram, 141, 261, 264
Serializable, 158
serialization, 158
setter, 40, 48

SettingsCenter, 155
shell, 2
Shipment, 246, 259
sibling directory, 12
Simulation, 251, 261
Simulator, 142, 295
Singleton pattern, 116, 207, 248,

260
SkipCard, 263
Slack, 233
slash, 7, 8
SMTPServer, 257
“smuggling”, 182
snapshot, 17, 58, 67
“software”, 22, 24
software crisis, 21, 26
software development lifecycle,

269
solution domain, 257
Song, 151, 258
sort(), 204
SortedArrayList, 178
a “sounding” (from a ship), 141
source file, 5, 18
spaghetti code, 26
special directory shortcuts, 11
Spotify, 258
the stack, 58, 69

popping off, 71
pushing on, 71

stack frame, 65, 70, 71, 121
stack trace, 85, 87
--staged argument, 224
staging area, 216, 224
star (⋆), 100
startup company, 267
state, 41, 47, 245

illegal, 80

INDEX 313

static, 38, 49, 73, 117, 151
static (view of memory), 89
Stephen, 297
stereotype, 92, 196
Storable, 201
Store, 248
strategy vs. tactics, 271
struct, 31
Student, 98, 104, 176, 198
subclass, 175, 185, 199, 208
subroutine, 38
sudo, 288
“Sunny Day” flow, 275
super, 196
Super Smash Bros, 183
superclass, 174
superlinear, 27
Supplier, 259
sweater, 32
sword, 32
synchronized, 118
synopsis, 275
synthesis, 235
system boundary, 273

Team, 110, 294
template, 35
Terminal application, 3
testing

system, 270
unit, 270

text file, 5, 159
text format, 158
theInstance, 117
this, 44, 72, 75
Thor, 181
thread, 118
throw, 81

throws, 83
@throws tag, 289
thunder shock, 190
time traveling (in git), 225
.toString(), 54, 146, 206
Transcript, 101
transparent, 189
tree, 4, 6, 7, 32, 176, 189, 206,

209, 215, 260, 263, 271
triangle (△), 174, 200
try/catch, 82, 166
TunesMgr, 151
TwitterUser, 103
type, 36
typecast, 127

UML (Unified Modeling Lan-
guage), 36

underlined, 38, 40
underwear drawer, 301
Unix, 1, 3, 9
Uno!®, 249, 260
untracked file, 219
Use Case, 272
.useAgainst(), 191
User, 99, 157
≪uses≫ stereotype, 92, 93

variable, reference, 59
Venkman, Peter, 35
verb, 31, 275
version control system, 17
Villain, 103
vim, 16, 42, 158, 215
vimdiff, 222
vimtutor, 16
virtual machine, 18
visibility, 105, 110

314 INDEX

Vlissides, John, 115
void, 40

Weapon, 100, 102
“what” vs. “how”, 271, 301
WildCard, 263
WildDrawFourCard, 263
Wirfs-Brock, Rebecca, 235
Wizard, 93
working directory, 7
workspace, 215, 224
Wozniak, Steve, 268
wrapper class, 129

Zelda, 183
zero or more (0..⋆), 101
zombies, 226
zoo, 187, 193
Zork, 279

	Contents
	Getting off the ground
	The ``software crisis''
	Classes and objects
	Memory matters
	Exceptions
	UML class diagrams
	The Singleton pattern
	Java odds 'n' ends
	UML sequence diagrams
	Persistence and hydration
	Inheritance (1 of 2)
	Inheritance (2 of 2)
	The Factory pattern
	Team software development
	Doing design (1 of 2)
	Doing design (2 of 2)
	Use cases
	Documenting an API

