
 Teaching and Learning Advances on Sensors for IoT • Sergio M
artin

Teaching and
Learning
Advances on
Sensors for IoT

Printed Edition of the Special Issue Published in Sensors

www.mdpi.com/journal/sensors

Sergio Martin
Edited by

Teaching and Learning Advances on
Sensors for IoT

Teaching and Learning Advances on
Sensors for IoT

Editor

Sergio Martin

MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade • Manchester • Tokyo • Cluj • Tianjin

Editor
Sergio Martin

National Distance Education University
Spain

Editorial Office

MDPI
St. Alban-Anlage 66

4052 Basel, Switzerland

This is a reprint of articles from the Special Issue published online in the open access journal Sensors
(ISSN 1424-8220) (available at: https://www.mdpi.com/journal/sensors/special issues/teach IoT).

For citation purposes, cite each article independently as indicated on the article page online and as
indicated below:

LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Volume Number,

Page Range.

ISBN 978-3-0365-0522-0 (Hbk)

ISBN 978-3-0365-0523-7 (PDF)

© 2021 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license, which allows users to download, copy and build upon

published articles, as long as the author and publisher are properly credited, which ensures maximum

dissemination and a wider impact of our publications.

The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons

license CC BY-NC-ND.

Contents

About the Editor . vii

Preface to ”Teaching and Learning Advances on Sensors for IoT” ix

Rafael Pastor-Vargas, Llanos Tobarra, Antonio Robles-Gómez, Sergio Martı́n,
Roberto Hernández and Jes ́us Cano

A WoT Platform for Supporting Full-Cycle IoT Solutions from Edge to Cloud Infrastructures:
A Practical Case
Reprinted from: Sensors 2020, 20, 3770, doi:10.3390/s20133770 . 1

Iván Ruiz-Rube, José Miguel Mota, Tatiana Person, José Marı́a Rodrı́guez Corral and
Juan Manuel Dodero

Block-Based Development of Mobile Learning Experiences for the Internet of Things
Reprinted from: Sensors 2019, 19, 5467, doi:10.3390/s19245467 . 23

Bernardo Tabuenca, Vicente Garcı́a-Alcántara, Carlos Gilarranz-Casado and
Samuel Barrado-Aguirre

Fostering Environmental Awareness with Smart IoT Planters in Campuses
Reprinted from: Sensors 2020, 20, 2227, doi:10.3390/s20082227 . 43

Alberto Huertas Celdrán, José A. Ruipérez-Valiente, Félix J. Garcı́a Clemente,
Marı́a Jes ús Rodrı́guez-Triana, Shashi Kant Shankar and Gregorio Martı́nez Pérez

A Scalable Architecture for the Dynamic Deployment of Multimodal Learning Analytics
Applications in Smart Classrooms
Reprinted from: Sensors 2020, 20, 2923, doi:10.3390/s20102923 . 63

Tiago M. Fernández-Caramés, Paula Fraga-Lamas

Teaching and Learning IoT Cybersecurity and Vulnerability Assessment with Shodan through
Practical Use Cases
Reprinted from: Sensors 2020, 20, 3048, doi:10.3390/s20113048 . 85

v

About the Editor

Sergio Martin (Associate Professor) works at UNED (National University for Distance

Education, Spain). He received a Ph.D. from the Electrical and Computer Engineering Department

of the Industrial Engineering School of UNED. He is a computer engineer in distributed applications

and systems at the Carlos III University of Madrid. He has taught subjects related to microelectronics

and digital electronics since 2007 in the Industrial Engineering School of UNED. He has participated

since 2002 in national and international research projects related to mobile devices, ubiquitous

computing and the Internet of Things as well as in projects related to “e-learning”, virtual and remote

labs and new technologies applied to distance education. He has published more than 200 papers

both in international journals and conferences and received more than 25 awards during his career.

He has organized several international conferences and has served as associate/guest editor of several

JCR journals.

vii

Preface to ”Teaching and Learning Advances on

Sensors for IoT”

Dear Colleagues,

The Internet of Things (IoT) is widely considered the next step towards a digital society where

objects and people are interconnected and interact through communication networks. The IoT not

only has a huge social impact, but can also support the employability and boost the competitiveness

of companies. It is widely considered one of the most important key drivers for the implementation

of so-called Industry 4.0 and for the digital transformation of companies.

Sensing is a fundamental part of IoT environments, where massive amounts of data are

constantly sensed. Proper quality data acquisition leads to more accurate decision making. Thus,

the importance of good practices when sensing data in IoT environments is growing.

The rapid diffusion of IoT technologies has created an important educational challenge, namely,

the need to train a large number of professionals able to design and manage a fast evolving and

complex ecosystem. Thus, an important research effort is being carried out in innovative technologies

(simulators, virtual and remote labs, mobile apps, robotics, e-learning platforms, learning analytics,

etc.) applied to innovative teaching practices.

This book focuses on all the technologies involved in improving the teaching and learning

process of some of the sensor-based IoT topics, such as virtual sensors, simulated data acquisition,

virtual and remote labs for IoT sensing and innovative teaching materials, among others.

For example, the work presented by Pastor-Vargas et al., Labs of Things at UNED (LoT@UNED),

provides remote laboratories for full IoT development, including edge, fog and cloud computing,

complemented with communication protocols and cybersecurity. The use of these remote laboratories

allows students to acquire complete IoT skills using real devices and platforms from home. The paper

also introduces its use in an official master’s degree in computer engineering. The work done by

Fernández-Camarés et al. provides an introductory practical guide to IoT cybersecurity assessment

and exploitation. On the other hand, Huertas et al. propose a novel multimodal learning analytics

architecture that builds on software-defined networks and network function virtualization principles.

The provided findings and the proposed architecture can be useful for other researchers in the area of

MMLA and educational technologies envisioning the future of smart classrooms. The work done

by Tabuenca et al. addresses the educational need to train students on how to design complex

sensor-based IoT ecosystems. Hence, a project-based learning approach is followed to explore

multidisciplinary learning processes implementing IoT systems that varied in the sensors, actuators,

microcontrollers, plants, soils and irrigation systems they used. Finally, the work done by Ruiz-Rube

presents several extensions to the block-based programming language used in App Inventor to make

the creation of mobile apps for smart learning experiences less challenging. Such apps are used to

process and graphically represent data streams from sensors by applying map-reduce operations.

The articles published in this book present only some of the most important topics about

IoT learning and teaching. However, the selected papers offer significant studies and promising

environments.

Sergio Martin

Editor

ix

sensors

Article

A WoT Platform for Supporting Full-Cycle IoT
Solutions from Edge to Cloud Infrastructures:
A Practical Case

Rafael Pastor-Vargas 1,∗, Llanos Tobarra 1, Antonio Robles-Gómez 1, Sergio Martin 2,

Roberto Hernández 1 and Jesús Cano 1,3

1 Department of Control and Communication Systems, Computer Science Engineering Faculty,
Spanish National University for Distance Education (UNED), 28040 Madrid, Spain; llanos@scc.uned.es (L.T.);
arobles@scc.uned.es (A.R.-G.); roberto@scc.uned.es (R.H.); jesus.cano@computer.org (J.C.)

2 Electrical and Computer Department, Industrial Engineering School, Spanish National University for
Distance Education (UNED), 28040 Madrid, Spain; smartin@ieec.uned.es

3 Faculty of Law, San Pablo CEU University, 28003 Madrid, Spain
* Correspondence: rpastor@scc.uned.es

Received: 22 May 2020; Accepted: 2 July 2020; Published: 5 July 2020

Abstract: Internet of Things (IoT) learning involves the acquisition of transversal skills ranging from
the development based on IoT devices and sensors (edge computing) to the connection of the devices
themselves to management environments that allow the storage and processing (cloud computing) of
data generated by sensors. The usual development cycle for IoT applications consists of the following
three stages: stage 1 corresponds to the description of the devices and basic interaction with sensors.
In stage 2, data acquired by the devices/sensors are employed by communication models from the
origin edge to the management middleware in the cloud. Finally, stage 3 focuses on processing and
presentation models. These models present the most relevant indicators for IoT devices and sensors.
Students must acquire all the necessary skills and abilities to understand and develop these types
of applications, so lecturers need an infrastructure to enable the learning of development of full IoT
applications. A Web of Things (WoT) platform named Labs of Things at UNED (LoT@UNED) has been
used for this goal. This paper shows the fundamentals and features of this infrastructure, and how the
different phases of the full development cycle of solutions in IoT environments are implemented using
LoT@UNED. The proposed system has been tested in several computer science subjects. Students
can perform remote experimentation with a collaborative WoT learning environment in the cloud,
including the possibility to analyze the generated data by IoT sensors.

Keywords: web of things; IoT learning; cloud computing; protocols; virtualization; instructional design

1. Introduction

Internet of Things (IoT) [1] has become a key technology for the interconnection of smart
devices [2] with their surroundings. These devices acquire information from their immediate
environment using specific sensors and change the state of their environment through actuators.
These changes are performed through algorithms that determine the interaction with the environment.
This computational capacity is defined by the “Edge Computing” paradigm, which encompasses
not only algorithmic solutions but also the boundary conditions that must be taken into account
when implementing the device’s intelligence [3–5]. These conditions include requirements in terms of
response time, cost and energy consumption and use of bandwidth in communications, among others.

In the field of education, these technologies have been employed in computer science courses [6],
by allowing students to have a smooth and natural approach to them and their applications [7,8].

Sensors 2020, 20, 3770; doi:10.3390/s20133770 www.mdpi.com/journal/sensors1

Sensors 2020, 20, 3770

Additionally, [9,10] present the evolution of IoT learning scenarios in contexts like distributed
computing and cybersecurity. These contexts use distance learning/teaching methodologies and
corresponding environments.

The use of IoT applications has multiple fields of application [1], such as e-Health (health
monitoring of people [11], Personalized Healthcare [12] or biosensors-based environments [13,14]),
Smart Cities (traffic control [15] or intelligent transport systems [16]), Agriculture [17,18] or the vehicle
industry [19,20], among many others. The applications are practically endless, considering that the
number of intelligent devices and sensing systems are growing at a dizzying pace.

IoT has exploded in recent years, and it does not look like a short-term slowdown is taking place.
Gartner [21] predicted that there will be 20.4 billion smart devices connected and in use worldwide
by 2020, and a new Business Insider Intelligence study [22] predicts that the IoT market will grow by
more than $3 billion a year by 2026.

Taking into account the need for professionals in all the areas mentioned above, it is necessary
to have specific learning processes that allow students to acquire the necessary competences and
skills to undertake projects based on IoT infrastructures. Students must use components and layers
(hardware/software) that are deployed in this type of solution, so the learning process must incorporate
the use of technological tools similar to those that will be found on these IoT environments and domains.
Thus, the objectives of this paper are the following:

1. Analyze the main stages involved in the IoT development cycle and define the essential
characteristics of an environment that supports the learning and experimentation of all
these stages.

2. Describe the main features of a system designed by the authors that cover all IoT development
stages and and how this system fulfils the essential characteristics mentioned before.

3. Evaluate the students’ perception of the platform’s usefulness and its applicability in the different
stages involved in IoT projects.

The developed platform, Labs of Things at UNED (LoT@UNED), provides remote laboratories
for full IoT development, including edge, fog and cloud computing and complemented with
communication protocols and cybersecurity. The use of these remote laboratories allows students to
acquire complete IoT skills using real devices and platforms from home. The paper also introduces its
use in an official master degree in Computer Engineering.

Regarding the paper organization, Section 2 shows the methodology followed in this paper.
Section 3 describes the state of the art found in the literature about IoT remote laboratories. Section 4
describes the platform proposed by the authors, from the hardware, software and communications
point of view. Section 5 describes the practices implemented with this platform in a real use case.
Section 6 provides the results of a satisfaction survey provided to students. Section 7 details the
discussion of the main findings from the survey. Finally, conclusions are given in Section 8.

2. Methods

The methodology followed in this study includes the following steps:

1. Analysis of IoT applications to determine the main stages of IoT development.
2. Analysis of the literature to identify previous papers published describing IoT remote laboratories.

This analysis consists of the search for articles in the main scientific repositories for this topic:
MDPI, IEEExplorer and ScienceDirect. This step analyzes in which stages of IoT development are
focused the found papers.

3. Analysis of the system proposed by the authors to check the stages of IoT development covered.
4. In-depth description of the proposed system by the authors from the hardware, communications

and software points of view.
5. Description of the experimentation of this platform in a real Computer Engineering subject,

including the full IoT development cycle and indicating the designed practices provided to the

2

Sensors 2020, 20, 3770

students. A methodology based on a typical flow of the instructional design [23] has been used.
The first assumption made to start the application of instructional design is that the setting up of
a laboratory is not an isolated task. It should be integrated into the subject objectives as another
element of the instructional design. It should be a way to acquire a competence or skill related
to the subject. In addition to this, the methodology involved in a teaching/learning process
on distance, as our case is, implies much more periodical virtual attendance and interaction
with/among students than with a traditional methodology. All these learning resources presented
to students have to be available to them all time, and they expect innovation teaching approaches
to improve the quality of courses. This expectation is more noticeable in Engineering subjects
than only theoretical subjects such as maths when practical skills have to be acquired by
students. Additionally, supporting many students becomes a real challenge when technologies
are implemented and deployed in virtual courses. The instructional design methodology is made
up of the four phases, as it can be observed in the Figure 1:

• Activity Description. The educational objectives are first defined, a global description of the
laboratory is given to students and the expected outcomes are detailed to them in this step.

• Activity Design. In this phase, a set of elements to be employed in the activity are selected,
the acquisition data mechanism and the way in which the elements interact.

• Activity Development. Once the laboratory design is finished, students will be required
to perform some programming task with a set of provisioned services and obtained data,
as well as running a set of client applications. These have to be used, tested and synchronized
among them.

• Experimentation. The last step is to do experimentation with the services and applications
deployed to make improvements.

6. Survey preparation to analyze students’ satisfaction. It includes questions about: gender, age and
occupation. It also includes five-point Liker-scale questions about perceived usefulness, ease of
use, user attitude, social influence, ease of access and intention of use.

7. Analysis of the satisfaction survey provided to the students to validate the tool from a satisfaction
point of view. The previously mentioned indicators are analyzed by studying their standardized
mean, standard deviation, variance, minimum and maximum values, median, kurtosis,
asymmetry and Cronbach’s alpha.

Figure 1. Instructional design phases for a new laboratory.

3. State of the Art

To understand the complexity associated with the development of IoT solutions, it is important
to understand the organization of these systems, usually in a set of layers that implement specific
functionalities [3,24], as it can be observed in Figure 2. Usually, these layers are classified using

3

Sensors 2020, 20, 3770

a criterion of physical proximity to the environment and processing capacity of the components that
integrate it [25]:

• Layer 1: Edge computing [26,27]. This layer integrates hardware and software components as
smart devices, sensors and IoT protocols.

• Layer 2: Fog computing [4,5]. This intermediate layer provides an extra resources layer, such as
computing power or real-time services, to the edge layer.

• Layer 3: Cloud layer or dashboards [28] and assisted decision layer [24,29]. Data based solutions
using cloud services and the storage service of sensor data in layer 2. Usually, this layer uses
services, which need a high computational power capacity so this layer can be integrated with the
cloud provider of layer 2 or be located in another cloud provider, such as AWS IoT [30], Microsoft
Azure IoT [31] and IBM Watson IoT [32], or specific platforms [33].

Figure 2. Fog computing approximation for Internet of Things (IoT) solutions. Figure available on [34].

Other important aspects to have into account when analyzing IoT applications are the
communication technologies and protocols (such as HTTP, MQTT [25], CoAP [35] and others [36–38]),
and cybersecurity.

Analyzing the literature, most of the educational IoT labs are for hands-on experimentation.
Among those designed to experiment online out of laboratory facilities, many were just pure
simulations or virtual labs [39]. An example is the work of Patil et al. [40], who describe an IoT
virtual lab to allow students sensing and retrieving simulated data from the cloud using Python,
as part of the modeling and simulation lab.

Only a few remote labs can be found to allow remote experimentation. An example is
the work of Tunc et al. [41], who presented an IoT remote laboratory designed only for
cybersecurity experimentation.

El-Hasan [42] introduces an IoT mobile dashboard to allow off-campus practices through a system
including sensors, controlling and interfacing kits, cameras and others. Basically it only allows the
modification of certain parameters to switch the direction of rotation of a motor by changing predefined
values of voltage, current and power as well as other required parameters, such as speed and torque.

Fernandez-Pacheco et al. [43] describe an Arduino remote lab using a Raspberry Pi as
a server, but it is only intended for microcontroller programming (Arduino), not for IoT purposes
(cloud, Python programming, IoT protocols, cybersecurity, etc.).

Leisenberg [44] presents a remote lab based on Raspberry Pi for movement analysis.
Students should write the code to analyze real time images coming from a webcam. Again this
system is not intended for full-cycle IoT purposes.

4

Sensors 2020, 20, 3770

Rajurikar et al. [45] present a system for IoT protocols experimentation, mainly REST and CoAP.
They connected several sensors through an Arduino board and a Beagle Bone device to a cloud platform.
This cloud environment is only intended for End point Data Acquisition and decision-making.

From the previous work, we can conclude the essential characteristics to be covered in a IoT
laboratory/environment are:

• Access and development with IoT devices (edge programming).
• Development of solutions in the fog, with limited computational capacities (fog programming).
• Analysis of the data provided by the sensors and interaction with the actuators of the device

infrastructure (cloud dashboard and analytics programming).
• Configuration and management of specific communication protocols for IoT (protocol experimentation).
• Development of security techniques in IoT environments (cybersecurity).

It can also be observed that none of the analyzed works allow the implementation of all the
essential features required for learning the complete development cycle of the IoT applications.
Only Rajurikar et al. [45] complete the implementation and support of three out of the five features.
As a consequence, it is necessary to have an environment that complies with all the characteristics.

Table 1 compares the functionality implemented in each of the IoT remote labs found on the
literature and the authors’ proposed system. It can be observed that our proposal covers all the
features included in the study (edge programming, fog programming, cloud dashboards and analytics
programming, protocol experimentation and cybersecurity), whereas other approaches only cover
one or several functionalities. This way, the development of LoT@UNED implements the full set of
features, advancing in the development/research of this type of environments.

Table 1. Functionality comparison of the state of the art on IoT remote labs.

Edge
Programming

Fog
Programming

Cloud
Dashboard

and Analytics
Programming

Protocol
Experimentation

Cybersecurity

Tunc [41] X

El-Hasan [42] X

Fernandez-Pacheco [43] X

Leisenberg [44] X

Rajurikar [45] X X X

Authors X X X X X

To check how these features are implemented in the authors’ proposed system, the following
section describes the LoT@UNED platform more in detail.

4. Solution Description

4.1. Hardware Architecture

The LoT@UNED platform implements the edge layer through a set of IoT devices
(i.e., Raspberry Pi boards). Each device is connected to the services of layer 2 (Cloud IoT Layer) using
the MQTT protocol. This way, students can develop the skills and abilities corresponding to layers 1
and 2. The services of the Cloud IoT layer are provided through the IBM cloud provider, and specifically
using the IBM Watson IoT service. The service for storing sensor/device data is also implemented in
this provider. The non-relational database Cloudant is used for this purpose [46]. This cloud storage
service is used in the dashboard and assisted decision layer (Cloud Layer). Again, the IBM Watson
Studio service from IBM Cloud is used for the development of the analysis and machine learning
algorithms based on the data stored in the Cloudant service. LoT@UNED has been designed flexibly

5

Sensors 2020, 20, 3770

to be able to use other specific services from other providers for the cloud layers, so that experiences
can be designed for the development of IoT solutions using the AWS or Google services (AWS IoT,
Cloud IoT, S3 or Cloud Storage). The basis of a previous generation of our Web of Things (WoT)
platform was presented in [10].

The structure of the platform focuses on the availability of low-cost Raspberry Pi devices, which
are connected through a cluster that eases the device connection to the Internet. There are two logical
groupings available that facilitate the connection of new devices. The first group uses a specific rack for
the management and connection of the devices, as shown in Figure 3a. The characteristics of the rack
can be found on the website of the BitScope provider [47]. It allows grouping up to 40 Raspberry Pi
(Model B) devices, facilitating the connection to the electricity grid, the connection among devices and
the Internet connection. It can also be installed in a traditional rack, facilitating the management of the
cluster itself. Its high cost and the inability to add specific sensors in an individual way for each device
can be noticed as its main drawbacks.

The second grouping, as shown in Figure 3b, uses cheaper and more flexible components in terms
of device separation. This fact allows us to add specific sensors (cameras, GPS, temperature sensors,
etc.) without storage problems or cluster connectivity. In fact, the storage can be increased by lateral
fixings that support the structure of the cluster. Proof of this is the specific configuration that is used
in the example specified in the following section. This type of configuration is deployed outside of
the clusters to ease the replacement and management of the sensors in order to provide the necessary
redundancy for the services that uses this configuration.

(a) (b)

Figure 3. Devices clustering: blade rack and cheap setup. (a) Blade rack. (b) Cheap setup.

The variety of setups (clustered or individual) allows the logical grouping of the services offered
by LoT@UNED and, also, the redundancy necessary to provide a stable learning service for students.
For example, in the case of the setup of Figure 5, there are three exact replicas that are managed by the
software developed, installed on the base image of the Raspberry Pi and integrated transparently within
the service availability (a service, three concurrent accesses). The base image of each Raspberry Pi card
comes with the connection services to the IoT service in the cloud, which allows the self-registration
of the devices. This self-registration allows us to automatically have the inventory of the devices
and the available setups for the entire IoT environment of LoT@UNED. Each device will add specific
information about the type of educative service offered (it can be more than one), which will allow the
activity manager to decide on the assignment of each environment for the student who requests it.

4.2. Communication

Resources in LoT@UNED are understood as a standard communication channel using the MQTT
protocol (for interaction commands) and the required software to “control” and “program” the device
(a Python distribution, sensor access libraries, etc.). All these resources define a run-time environment
that depends on the service that the end-user wants to offer.

6

Sensors 2020, 20, 3770

The MQTT protocol has been selected due it its popularity and specific way of working.
This paradigm uses the message as a fundamental unit of communication. The participants in the
solution are the ones who give meaning to the message. The roles of subscriber, editor (publisher) and
broker are usually assigned. Subscribers register their interest in certain messages from one or more
editors/publishers. This interest is handled through the broker, which is the responsible for managing
the flow of messages between publishers and subscribers. Once the editor generates a message, it
is delivered through the broker so that it sends it to the interested subscribers. Hence, the MQTT
protocol is able to simplify and facilitate the synchronization between all nodes and jobs available in
the IoT platform.

Each message with MQTT is associated with a topic, so the broker and the subscriber can identify
the message. The usual topics are “data”, “status” or “alarm”; and they act as semantic labels of the
information carried by the messages. The targeting of different topics allows administrator to check
the health of the IoT solution and to monitor its network communication in a fast way.

An example of a message’s flow for MQTT is shown in Figure 4. In this particular case,
a temperature sensor (publisher) is sending the temperature using the topic data to the MQTT broker.
The MQTT broker delivers the topic messages to the two subscribers (computer and mobile device),
which previously registered their interest in the data topic.

Figure 4. MQTT flow of messages for topics and subscriptions.

4.3. Software Architecture

4.3.1. Virtualization and Orchestration

The run-time environment can be “packaged” using already known virtualization
technologies [41], such as Docker [48,49]. Docker is based on the use of containers that define
a prefabricated execution environment. Docker can be deployed in any infrastructure that supports
this technology. The definition of a service is based on the execution of one or more Docker containers,
although usually only one of them is necessary. Specifically, in the case of services associated with
experimental sessions with IoT devices, the container is executed on the same device which provides
sensors and runtime. However, in more advanced practices it is possible to run several containers
on the same device or several at the same time. This orchestration of containers allows identifying
scenarios of collaborative use where the sensors of several devices [50,51] are used in coordination
to obtain a specific purpose (traffic control at crossings with several traffic lights, data from the
environmental sensors of several drones flying over aerial areas for pollution indices, etc.).

Regardless of whether the service requires the execution of one or more containers, it is essential
to provide an orchestration layer of those containers providing:

7

Sensors 2020, 20, 3770

• Dynamic access management to devices. Since there may be an inherent concurrence in
the development of practices in a remote environment, the orchestration layer must identify
which services/containers are running on the IoT devices. This capability facilitates the
search for containers/devices available in the LoT@UNED infrastructure and the assignment to
new students.

• Redundancy and fault tolerance. The orchestration layer identifies the number of IoT devices
per usage scenario (service). It is able to assign, in case of failure, a new device (or several,
depending on the service). The ability to re-start (resume) the work session in case of failure is
not currently supported.

• Management of the basic containers of the services. To facilitate the distribution of existing
containers/services or the distribution of new ones, the orchestration layer should have the ability
to locate the images of those containers in standard repositories [52].

There are several orchestration system solutions available, such as Docker Compose [53],
Docker Swarm [54] or Kubernetes [55]. For the orchestration and control layer of LoT@UNED,
Kubernetes has been selected since it eases the management of the device containers and
the supervision of all the executed containers in the infrastructure through its dashboard [56].
This characteristic is essential to provide a continuous service delivery of the IoT laboratories in
the infrastructure and an availability close to 24 × 7.

The main drawback of the Kubernetes deployment model is associated with the dedicated use
of one of the infrastructure devices as the master node of the orchestration layer. This makes the
orchestration layer vulnerable to the fall of this node and, therefore, it is essential to monitor it in real
time, and to include automatic restart procedures.

4.3.2. Execution Services

The complete architecture of the execution services into the LoT@UNED infrastructure is shown in
Figure 5. It shows how each IoT device contains a Docker run-time environment and acts as a slave node
of the Kubernetes cluster. On the control plane, there is a device (a Raspberry Pi) that acts as a master of
the cluster and it communicates with the broker (IBM Watson IoT) to ease the communication channel
(MQTT) with the IoT devices to be used during the interactive sessions (Shell Service).

There are currently three base containers that are identified with the “services” offered by the LoT
infrastructure:

1. IoT. The container provides a run-time environment based on the Python programming language
and the sensor access libraries are available in device setups with the Sense Hat module. It is used
in the field of knowledge of IoT solutions.

2. Programming. This container/service only provides an environment with a Python distribution
for its use in basic programming activities.

3. Security. This environment provides the basic Linux tools for cybersecurity operations through
a virtual shell console: nmap, wireshark, route, etc. commands do not really run on the provided
virtual console, but directly on Raspberry Pi 3 devices, through the service orchestration platform.

8

Sensors 2020, 20, 3770

Figure 5. Technical solution for Labs of Things at UNED (LoT@UNED).

With these computing services (of execution) it is possible to build and define laboratory activities
in different areas using the flexible infrastructure of LoT@UNED. The fundamentals of the definition
of learning services and the workload protocol to define them using the tools/applications provided
by LoT@UNED are detailed in the next subsection.

4.3.3. Services Implemented

In order to take advantage of the scalability of the infrastructure introduced above, it is necessary
to provide such infrastructure with a set of services that allows the use of devices in remote educational
environments. The offered services should implement the following features:

• Authenticate the user (student/teacher) into the infrastructure. It is important to facilitate the
automatic identification of users. So, users must log in once but be able to access all the services
transparently (SSO, Single Sign-On).

• Provide direct access to an interactive environment with devices. This environment is customized
for the practice that the student must perform. Therefore, the actions that students can perform
on the devices are limited by the environment configuration.

• Include analytic capabilities by storing the student’s interaction through the whole cycle with
the devices. Thus, the executed commands as well as the responses can be retrieved for review.
Consequently, lecturers can evaluate the student’s performance during the work session.

• Provide the capability to create and edit learning practices using predefined services for a specific
field of knowledge (for example, IoT).

These characteristics are implemented through a set of services and applications that are included
in the environment. Specifically, two fundamental applications are fully integrated with LoT@UNED:

• Initial web portal for students/teachers [57]. This website portal allows user authentication and access
to the different practices available to the student, grouped by area of knowledge (see Figure 6).
In addition, in the case of the teacher role, practices can be created from predefined execution
services, adding the appropriate learning resources (statement of practice). Under the teacher
role, work session options can also be configured (duration, commands to be executed on the
IoT device, etc.). The access portal also allows verifying and analyzing the work sessions in the
different practices, intending to evaluate the students.

• Shell. This application implements direct interaction with the IoT device, taking into account
the possible actions and configuration of the practice defined by the teacher (Figure 7).
The MQTT protocol is used for interaction with the devices, which allows the entire work
session to be stored.

9

Sensors 2020, 20, 3770

Figure 6. Knowledge domain for IoT supported learning scenarios.

Figure 7. Interaction with IoT devices using the Shell service in LoT@UNED.

5. Experimentation

The sample case is carried out within the context of the “Cloud Computing and Network Service
Management” subject, which belongs to the MSc degree in Computer Science Engineering. This degree
is composed of a set of mandatory and optional subjects, some of them having 6 ECTS credits and
others 4 ECTS credits. The subject considered in this work is mandatory, consists of 4 ECTS credits and
is studied in the first semester of the first academic year. The degree is taught at the Computer Science
Engineering School of the public Spanish University for Distance Education (in Spanish, Universidad
Nacional de Educación a Distancia, UNED). The learning/teaching methodology is totally on distance,
since Master degrees at UNED do not consist of face-to-face classes.

The subject focuses on specific competencies and skills in developing cloud computing
solutions [58]. Students are provided with a guided example on the use of these technologies over
a complete IoT solution. Three different and interconnected practical activities have to be solved by the
students of this subject. The cybersecurity practice was not used, as it was out of the subject syllabus:

1. Development of a simple application in a cloud service provider.
2. Connecting IoT devices to IoT Cloud Services and Platform from a cloud provider. These IoT

devices are real boards accessed remotely.
3. Development of dashboards and data analytics based on information provided by sensors

connected to IoT devices.

10

Sensors 2020, 20, 3770

This solution is especially important for distance educational environments, which should satisfy
the following requirements:

• 24 × 7 availability of services associated with smart devices.
• Dynamic management of smart devices (horizontal growth of the IoT solution).
• Integration with IoT platforms and services in the cloud through the use of standard

communication protocols, such as those mentioned in the previous section.
• Direct interaction with the sensors/elements of the devices through simple user interfaces and

using Web protocols.

The following sections describe each one of the practices implemented.

5.1. Practice 1: Simple Application in a Cloud Service Provider

As it was mentioned earlier, the use of IoT devices is required in the second assessment. In this
case, the specific skills to be learned focus on the first layer of the development of IoT solutions, this is,
the sensors/devices/protocols layer. In this practice, students have to deal with three of the essential
characteristics: edge programming, fog programming and protocol communication. A specific setup
is integrated into the LoT@UNED infrastructure for providing students with remote access to this
working layer (IoT devices). This setup is replicated, and it consists of a Raspberry Pi device and
its corresponding sensors. These setups are connected to the LoT@UNED infrastructure, so they are
available to the students by using the service portal. Each IoT device is able to record video and capture
photos, as well as measure temperature, humidity and pressure. It also captures values associated
with motion/location sensors (gyroscope, accelerometer and magnetometer), and it includes a GPS
module in anticipation of future mobile scenarios.

The physical implementation of this setup is carried out with a Raspberry Pi 3, as the basis of the
device/microcontroller component. This device, by default, does not have any specific sensor/actuator,
but many of them can be connected to develop different projects. In this specific case, a set of additional
elements has been incorporated to generate an environment with a set of sensors. These elements are:

• Raspberry Pi Camera. This element provides the features of video recording and photo capture.
It can also be used in remote space surveillance projects, configuring the device to broadcast in
real-time streaming.

• USB microphone. Since the Raspberry’s operating system is Debian, it is possible to connect
standard devices to its ports (specifically to the USB ports). In that case, the audio recording has
been added to the device to complement the video recording.

• GPS module. Although our learning scenario is considered to be static by default, this module
has been added in anticipation of mobile scenarios. In addition to this, it provides with a very
rich dataset in terms of GPS position itself, measurement error data and other associated values
provided by satellites when reading GPS values.

• Sense Hat module. This module was originally created to work on the Astro Pi mission in the
international space station. Subsequently, it became widely available to the entire Raspberry user
community. The Sense Hat module (see Figure 8) provides temperature, humidity and pressure
readings, as well as the values associated with motion/location sensors (gyro, accelerometer and
magnetometer). Additionally, it provides an array of 8 × 8 LEDs (RGB) and a five-button joystick.

11

Sensors 2020, 20, 3770

Figure 8. Example of individual Raspberry Pi device.

Students can access the Shell console to interact with the sensors by developing code in Python.
This code is used to get sensor values (temperature, pressure, humidity, accelerometer data and
GPS data). They can also write values directly on the LED array, so a word or phrase can be
displayed in the array. The setup provides a video stream that can be programmed using python code
(starting and stopping the video stream). To implement this activity, the related practice is designed
using the corresponding runtime service “IoT”. This service is defined as one of the three runtime
services available, as it was mentioned earlier.

The service is configured to connect with a Cloud IoT Service Platform (IBM Watson IoT). This way,
the setup’s environment provides the MQTT library (owned by IBM and deployed on the setup) for
programming and implementing the MQTT services (messages, topics and so on). These services must
be deployed via Python code and consumed by an external application, which has to be developed by
students (similar to the application shown in Figure 9).

Figure 9. Game of words. IoT devices with sense hat.

12

Sensors 2020, 20, 3770

Node-RED [59] is used to program this application. This framework is a visual development tool
for programming IoT environments. As the setup uses MQTT, students have to use connectivity blocks
for sending and receiving MQTT messages or topics. On the one hand, this tool allows the subscription
to one or several topics of the MQTT message system (coming from one device, or several ones); such
as the data from the sensors, current sessions or stops and messages between them. On the other hand,
a topic (message or event) to the MQTT message system for session management can be published.

5.2. Practice 2: Connecting IoT Devices to IoT Cloud Services and Platform from a Cloud Provider

After developing the “local” solution, corresponding to the sensors/devices/protocols layer,
students must learn and know the operation and services of an IoT platform in the cloud. In this
case, it is specifically intended that they learn how to store data from the sensors they are using in
the local solution. Since MQTT is used as a communication protocol, any cloud service platform
that supports this protocol can be used in this part of the learning scenario (layer 2 of the IoT’s full
development model). The platform used by the students for their practices is IBM Watson IoT because
the LoT@UNED infrastructure itself is based on this platform.

The main objective of this activity is to become familiar with the use of a series of services offered
by IBM Watson IoT, focusing on the storing of sensor data and device management. IBM Watson IoT
has a management space for device types and registered devices. Again, to understand the services
provided by the Cloud IoT Platform, a student must use a specific activity defined in LoT@UNED.
This practice is based in the “IoT” runtime service and its goal is to connect with the management space
(using MQTT protocol) and check the services for this Cloud IoT Platform. The full documentation
and services description is available in [60].

Additionally, to provide a cloud storage service, students must develop a single cloud application,
which uses the Cloudant [61] service to store the sensor ’s data. This application uses Node-red
framework to facilitate the integration with the MQTT protocol and get the data from the device
(assigned using LoT@UNED infrastructure). The Node-red distribution, included as a service in the
IBM Cloud platform, has specific blocks to connect with Cloudant services to simplify the storing of
information (see Figure 10). This data will be used in the next step of the learning scenario for the
Layer 3 of our sample case.

In short, the practice focuses on the aspects related to the specific communication protocols
of IoT and the integration with external suppliers. In addition, students experiment with the
security mechanisms of these protocols and the applications/services that use them. For the essential
characteristics, students work on: protocol experimentation and cybersecurity.

Figure 10. Cloudant integration in a Node-Red application.

13

Sensors 2020, 20, 3770

5.3. Practice 3: Development of Dashboards and Data Analytics

In previous sections, the theoretical aspects of dashboards and assisted decision layer learning
were given and, also, how this layer is linked with the LoT@UNED platform. Now, we detail a concrete
example of an application for this layer.

The presentation and decision layer provides human-readable information to see what is the
status of the IoT solution (specifically, status and information data from sensors). Sensors produce
valuable information from the environment in which they are integrated. This information allows the
generation of indicators to monitor different types of environments where sensorization can be critical.
For example, in the case of medical environments, biomedical sensors allow information to be collected
and displayed on dashboards to monitor patients [62,63]. The importance of the development of these
dashboards depends on the information monitored, but usually, at least, a dashboard is developed
to have monitoring information of the IoT environment. As previously seen, the information from
the environment is stored in a data storage service that is usually in the cloud. This information
can be represented in real-time, by dashboards, or analyzed to calculate performance indicators.
These indicators can be used in decision-making and risks evaluation [46]. Therefore, these decisions
are assisted by IoT data.

In this particular practice, the student will work on the development of a dashboard that uses the
analytical capacity of the cloud providers and will represent the relevant information from the IoT
data. This way, students will work on the essential characteristics corresponding to cloud dashboard
and analytics programming. The dashboard must show real-time information about temperature,
humidity and pressure (provided by the Sense Hat sensors). In addition, other indicators can be
shown dynamically, such as time, the accelerometer values (X, Y and Z coordinates), pitch, yaw
and roll. Figure 11 shows an example of a single dashboard built with basic gauges. This example
is a basic template provided to students, which has to be modified and enriched following basic
visualization techniques.

Figure 11. Single dashboard for sensor data.

14

Sensors 2020, 20, 3770

Once the student has proven to be able to solve IoT data representation problems, they have
to add the decision element in the production line related to an IoT solution. These decisions must
be based on using stored data from sensors, and they will vary depending on the environment in
which the solution is integrated [64]. The use of instantaneous data is not enough, so it is necessary to
verify the evolution of the data and calculate performance indicators (usually statistical indicators).
The cloud IoT service platform stores the data (layer 2 in our model), so the indicators can be analyzed
and graphically represented. Data being in the cloud allows for its use in different service providers
that have data analysis tools and in many cases, given the nature of the IoT data production ratio,
Big Data techniques must be applied.

On the other hand, by using the Apache Spark analytics service, students have to analyze the
stored data. Another service named IBM Watson Studio is used jointly with the Apache Spark Engine
to facilitate the use of the analytics service. These services allow for the creation of notebooks in
a variety of programming languages (among others, Python or Scala) for interactive work with the
aforementioned services. Students must use one of the following sensed parameters as a basis of the
analysis: temperature, humidity, or pressure. Additionally, some filter tasks are necessary for data.
Some examples are changing the sensed time from string to DateTime, grouping values, filling empty
values, transforming data to make specific accesses or truncating values. This way, students learn how
to manage the generated data in the cloud and prepare them for the data analysis itself.

6. Results

This section analyzes the data obtained from an opinion survey provided to LoT@UNED students.
Some preliminary results and conclusions were included in [65]. The amount of surveyed students
was 129, in which 89.15 % of the users were male and the 10.85 % of them were female, as indicated
in Table 2. With regard to the job occupation, a big amount of students are not related to computer
science. In particular, a total of 79.9 % of students.

Figure 12 shows the comparison of the job situation of the surveyed students about the
LoT@UNED platform, in terms of their job profile (computer scientist, non-computer scientist
and others) with their age divided by ranges (less or equal to 30 years, between 30 and 39 years,
between 40 and 49 years and equal to or older than 50 years). As observed, many students are in the
range of 30 and 39 years old with a dominant computer science profile. The conclusion about the
job occupation is even stronger for the range of 40–49 years old. In contrast, the youngest and oldest
students have an occupation profile out of computer science.

Table 2. Users’ profile.

Indicator Options (%)

Gender Male 89.15
Female 10.85

Age Group

≤30 years 30.23
30–39 years 42.64
40–49 years 24.03
≥50 years 3.10

Occupation
Computer science related job position 20.1

Non-computer science related job position 51.2
Others 28.7

15

Sensors 2020, 20, 3770

Figure 12. Comparing the job situation versus the age ranges for users who tested the
LoT@UNED platform.

The measured indicators were the perceived usefulness of the LoT@UNED platform by students,
its ease of use for practical activities, the users’ attitude when using the platform, the social influence
when using it, the ease of access to the platform and the students’ intention of use the platform for
practical activities within the context of LoT@UNED.

Table 3 represents the statistical data generated from the students’ opinion survey (perceived
usefulness, ease of use, user attitude, social influence, ease of access and intention of use), in terms
of the standardized mean, standard deviation, variance, minimum and maximum values, median,
kurtosis, asymmetry and Cronbach’s alpha. Regarding the mean values of indicators, with a five-point
scale, they can be considered as very good. The best one is the ease of use with a value of 4.13, but the
worse one is the ease of access with a value of 3.40. This fact can be due to the student’s profile
described above. The presented standard deviation and variance values are not so high, enforcing
the goodness of the exposes results. In addition to this, mean and median values are very similar.
The analysis of the kurtosis, asymmetry and Cronbach’s alpha indicators indicate that these results
are consistent.

The kurtosis characteristic describes the concentration of data around the average of each indicator
shown in Table 3. These kurtosis values are positive for four indicators (they are on the right side of
the mean) and negative for two of them (they are on the left side of the mean). These characteristics
consider the standardized mean of each indicator as a central point, so the data distribution is close to
each indicator mean. This means they are not too scattered and in ranges of normality. This is enforced
by examining the median value of each indicator, since they are near its corresponding mean.

On the other hand, the asymmetry characteristic measures the degree of symmetry of the data
distribution for each indicator shown in the horizontal axis. These asymmetry values are negative in
all cases, except one of them, so their distribution generally tends to the left within the x-coordinate
axis. Obviously, the positive case is to the right side. They are not too high of values, so they are
considered as a good distribution.

In addition to this, the Cronbach’s alpha for each indicator is bounded among 0.87 and 0.90. These
values are considered as more than acceptable. What is more, the general Cronbach’s alpha is slightly
higher than 0.9. This means that the reliability of all indicators together is really good, and we can
conclude that there is a correct internal consistence. The Cronbach’s alpha calculates the mean of the
correlation among the exposed indicator.

16

Sensors 2020, 20, 3770

These results are very rich, since they contain lower and higher values, as indicated with
the minimum and maximum values. To sum up, the exposed statistical values are satisfactory,
by considering the literature [66,67], being very reliable to be employed in further studies. Additionally,
Table 4 shows the amount of students who answered for each indicator: strongly agree, agree, neutral,
disagree or strongly disagree.

Table 3. Results obtained from an opinion survey after testing the LoT@UNED platform
(statistical data).

Perceived
Usefulness

Ease of
Use

User
Attitude

Social
Influence

Ease of
Access

Intention
of Use

Standardized Mean 3.93 4.13 4.11 3.67 3.40 4.04

Standard Deviation 0.87 0.95 0.89 0.79 0.71 1.04

Variance 0.76 0.91 0.80 0.63 0.50 1.09

Minimum Value 1.00 1.00 1.00 2.00 1.50 1.00

Maximum Value 5.00 5.00 5.00 5.00 5.00 5.00

Median 4.00 4.33 4.25 3.67 3.50 4.33

Kurtosis 0.96 0.15 0.43 −0.92 −0.04 0.01

Asymmetry −0.95 −0.96 −0.93 0.21 −0.27 −0.96

Cronbach’s Alpha 0.88 0.89 0.87 0.89 0.90 0.88

Table 4. Results obtained from an opinion survey after testing the LoT@UNED platform (counting with
a five-point Liker-scale).

Strongly
Agree

Agree Neutral Disagree Strongly
Disagree

Perceived Usefulness 43 58 20 7 1

Ease of Use 61 37 21 9 1

User Attitude 61 40 21 6 1

Social Influence 22 46 55 6 0

Ease of Access 7 63 50 9 0

Intention of Use 61 34 19 13 2

Finally, Table 5 indicates how the selected indicators are correlated among them. The represented
values enforce the conclusions obtained for the statistical data described above. There is a strong
influence among them. The next step would be to examine their concrete influence, and how they are
related. The perceived usefulness influences the user attitude about using the LoT@UNED platform in
very a strong way, with a value of 0.813. The usefulness indicator also affects the intention of use of
this platform in the future in an indirect way. This value is 0.689. Another strong influence is the user
attitude versus the intention of use, with a value of 0.768. The rest of the indicators are very influenced
among them in a lower manner. Results marked with * correspond to the presented ones in the same
table when comparing the two indicators in the opposite axis.

17

Sensors 2020, 20, 3770

Table 5. Correlation matrix among the exposed indicators.

Perceived
Usefulness

Ease of
Use

User
Attitude

Social
Influence

Ease of
Access

Intention
of Use

Perceived
Usefulness

1.000 0.597 0.813 0.615 0.552 0.689

Ease of Use * 1.000 0.609 0.527 0.582 0.597

User Attitude * * 1.000 0.616 0.610 0.768

Social Influence * * * 1.000 0.517 0.543

Ease of Access * * * * 1.000 0.535

Intention of Use * * * * * 1.000

7. Discussion

According to the results obtained in the student survey, students find the LoT@UNED platform
very useful (standardized mean for perceived usefulness: 3.93). It is a global indicator associated
with the activities carried out in the LoT@UNED platform, described in the experimentation section.
Being a non broken down indicator makes it impossible to get a particular statistical measure for every
essential characteristic. However, taking into account the population associated with the survey and
the statistical result, we can infer that the platform is useful for implementing each of these essential
characteristics (edge, fog, cloud and analytics, protocol and cybersecurity). This inference is based on
the fact that the design made for the three practices implements the five essential characteristics.

It is also interesting to note that the ease of use and intention of use have high values (standardized
mean: 4.13 and 4.04, respectively). This issue means that the design of the platform itself has been
done correctly and has simplified the development of the practices carried out by the students.
Moreover, the high value of the intention of use indicator allows inferring that the student would
be willing to use it in more similar practices in the IoT laboratory environment and even in other
disciplines (cybersecurity, programming, etc.). This ability is possible because the platform allows the
generation of specific services supported by the set of IoT devices that compose it.

The lowest values of the indicators (even though, they are values that indicate good behavior)
correspond to ease of access and social influence indicators (standardized mean: 3.40 and 3.67,
respectively). From these values, it can be deduced that the laboratory’s workflow and the way
to access the devices may be improved. This issue mainly affects the essential features of edge and fog
computing because the virtualization layers introduce delays and complexity in the interaction that
influence the ease of access and interaction. Additionally, the social influence indicator warns about
the lack of interaction between students inside and outside the LoT@UNED environment. Practices
are indeed carried out at distance and individually, so the social factor has less influence than in
a face-to-face environment, but it is necessary to work on it. For this reason, the platform must
provide collaborative tools that facilitate social interaction and communication in real time between
students and teachers. These new features will be included in future versions of the platform. These
improvements will focus more on the design part of learning than on the development of IoT lab
environments and the support of essential characteristics for educational IoT laboratories.

8. Conclusions

The learning/teaching processes in the development cycle of IoT solutions imply a set of skills
ranging from devices and IoT sensors, their communication protocols, the storage management and
the processing environments on the Cloud for data generated by sensors. These environments are then
eventually able to make decisions or show the relevant information on those sensors (as indicators).
These fundamental competences are needed in the full cycle of development of IoT solutions,
consisting on three layers: (1) basic interaction with sensors and specific communication protocols;

18

Sensors 2020, 20, 3770

(2) data management models to handle the generated data; and (3) processing and visualization of the
most relevant indicators on these IoT devices. In this last step, the processing can include a specific
communication protocol. This protocol could be used to perform actions in the IoT device itself as
a response to the processed indicators (for example, using available actuators at the device).

According to this, this work first presents the main features of the LoT@UNED platform, which
has been developed to cover the instructional design of our subjects, and how the three layers of the
proposed full cycle of development for IoT solutions are implemented in it. The essential characteristics
for this kind of laboratories/environments are fulfilled by this platform: edge programming,
fog programming, cloud dashboard and analytics programming, protocol experimentation and
cybersecurity. Each phase is associated with a specific activity that is deployed in a standard way using
Docker containers managed through a cluster manager (with Kubernetes). The manager balances the
workload of different devices. Thus, the use of the devices/sensors is assigned in a dynamic way to
the students who are developing the activities. This platform allows students to implement all these
phases efficiently and redundantly, providing high availability for its use.

The proposed LoT@UNED platform has also been used for students in several computer science
subjects. The use of this platform is especially relevant in online educational environments, as is the
case of distance universities. This way, they perform remote experimental activities with a collaborative
IoT learning infrastructure in the cloud, analyze the data generated and make visual representations in
it. As for the result and discussion sections, we can conclude that the perceived usefulness and ease
of use of the proposed platform values are really good, as well as the intention of use it in the future
for additional practices. The students’ attitude is also great with respect to the use of the platform in
practical activities. The rest of the indicators are good, although they are challenging for working on
improving the social influence among students when using it, and easing the access mechanisms.

As for future work, the presented method for validation of the IoT platform will be improved.
To achieve this, a UTAUT model will be hypothesized. The same set of factors will be considered
(easy of use, usefulness, attitude, social influence, . . .) to be included in this model, in order to check
the intention to use the presented technology. Another future line of research is to exhaustively analyze
the students’ learning progress into the LoT@UNED platform. Finally, the source code of this tool has
not yet been shared with any other institution but the release of the code is also one of our next steps
for future work. We would like to have a community around it to go on including improvements.

Author Contributions: Conceptualization, R.P.-V., L.T., A.R.-G., S.M., R.H. and J.C.; Data curation, R.P.-V., L.T.,
A.R.-G., S.M., R.H. and J.C.; Formal analysis, R.P.-V., L.T., A.R.-G., S.M., R.H. and J.C.; Funding acquisition, R.P.-V.,
L.T., A.R.-G., S.M., R.H. and J.C.; Investigation, R.P.-V., L.T., A.R.-G., S.M., R.H. and J.C.; Methodology, R.P.-V., L.T.,
A.R.-G., S.M., R.H. and J.C.; Project administration, R.P.-V., L.T., A.R.-G., S.M., R.H. and J.C.; Supervision, R.P.-V.,
L.T., A.R.-G., S.M., R.H. and J.C.; Validation, R.P.-V., L.T., A.R.-G., S.M., R.H. and J.C.; Visualization, R.P.-V., L.T.,
A.R.-G., S.M., R.H. and J.C.; Writing—original draft, R.P.-V., L.T., A.R.-G., S.M., R.H. and J.C.; Writing—review &
editing, R.P.-V., L.T., A.R.-G., S.M., R.H. and J.C. All authors have read and agreed to the published version of the
manuscript.

Funding: This work is a part of the eNMoLabs research project, and it is funded by the Universidad Nacional de
Educación a Distancia (UNED).

Acknowledgments: The authors would like to acknowledge the support of the eNMoLabs research project for
the period 2019–2020 from UNED; our teaching innovation group, CyberGID, started at UNED in 2018 and its
associated CyberScratch PID project for 2020; another project for the period 2017–2018 from the Computer Science
Engineering Faculty (ETSI Informática) in UNED; and the Region of Madrid for the support of E-Madrid-CM
Network of Excellence (S2018/TCS-4307). The authors also acknowledge the support of SNOLA, officially
recognized Thematic Network of Excellence (RED2018-102725-T) by the Spanish Ministry of Science, Innovation
and Universities.

Conflicts of Interest: The authors declare no conflict of interest.

19

Sensors 2020, 20, 3770

References

1. Al-Fuqaha, A.; Guizani, M.; Mohammadi, M.; Aledhari, M.; Ayyash, M. Internet of Things: A Survey
on Enabling Technologies, Protocols, and Applications. IEEE Commun. Surv. Tutor. 2015, 17, 2347–2376.
[CrossRef]

2. Kortuem, G.; Kawsar, F.; Sundramoorthy, V.; Fitton, D. Smart objects as building blocks for the Internet of
things. IEEE Internet Comput. 2010, 14, 44–51. [CrossRef]

3. Shi, W.; Cao, J.; Zhang, Q.; Li, Y.; Xu, L. Edge Computing: Vision and Challenges. IEEE Internet Things J.
2016, 3, 637–646. [CrossRef]

4. Fog Computing and the Internet of Things: Extend the Cloud to Where the Things Are.
Available online: https://www.cisco.com/c/dam/en_us/solutions/trends/iot/docs/computing-overview.
pdf (accessed on 1 July 2020).

5. Chiang, M.; Zhang, T. Fog and IoT: An Overview of Research Opportunities. IEEE Internet Things J. 2016,
3, 854–864. [CrossRef]

6. Vaquero, L.M. EduCloud: PaaS versus IaaS Cloud Usage for an Advanced Computer Science Course.
IEEE Trans. Educ. 2011, 54, 590–598. [CrossRef]

7. Xu, L.; Huang, D.; Tsai, W. Cloud-Based Virtual Laboratory for Network Security Education.
IEEE Trans. Educ. 2014, 57, 145–150. [CrossRef]

8. AlHogail, A. Improving IoT Technology Adoption through Improving Consumer Trust. Technologies 2018, 6,
64. [CrossRef]

9. Pastor, R.; Romero, M.; Tobarra, L.; Cano, J.; Hernández, R. Teaching cloud computing using Web of
Things devices. In Proceedings of the 2018 IEEE Global Engineering Education Conference, EDUCON 2018,
Santa Cruz de Tenerife, Spain, 17–20 April 2018; pp. 1738–1745. [CrossRef]

10. Tobarra, L.; Robles-Gómez, A.; Pastor, R.; Hernández, R.; Cano, J.; López, D. Web of Things Platforms for
Distance Learning Scenarios in Computer Science Disciplines: A Practical Approach. Technologies 2019, 7, 17.
[CrossRef]

11. Shaikh, Y.; Parvati, V.K.; Biradar, S.R. Survey of Smart Healthcare Systems using Internet of Things
(IoT). In Proceedings of the 2018 International Conference on Communication, Computing and
Internet of Things (IC3IoT), Chennai, India, 15–17 February 2018; pp. 508–513. [CrossRef]

12. Qi, J.; Yang, P.; Xu, L.; Min, G. Advanced Internet of Things for Personalised Healthcare System: A Survey.
Pervasive Mob. Comput. 2017, 41, 132–149. [CrossRef]

13. Yang, G.; Xie, L.; Mäntysalo, M.; Zhou, X.; Pang, Z.; Xu, L.; Kao-Walter, S.; Chen, Q.; Zheng, L.R. A Health-IoT
Platform Based on the Integration of Intelligent Packaging, Unobtrusive Bio-Sensor and Intelligent Medicine
Box. IEEE Trans. Ind. Inf. 2014, 10, 1. [CrossRef]

14. Mavrogiorgou, A.; Kiourtis, A.P.K.P.S.K.D. IoT in Healthcare: Achieving Interoperability of High-Quality
Data Acquired by IoT Medical Devices. Sensors 2019, 19, 1978. [CrossRef] [PubMed]

15. Cruz-Piris, L.; Rivera, D.; Fernández, S.; Marsá-Maestre, I. Optimized Sensor Network and Multi-Agent
Decision Support for Smart Traffic Light Management. Sensors 2018, 18, 435. [CrossRef] [PubMed]

16. Javed, M.A.; Ben Hamida, E.Z.W. Transport Systems for Smart Cities: From Theory to Practice. Sensors 2016,
16, 879. [CrossRef]

17. Liu, S.; Guo, L.; Webb, H.; Yao, X.; Chang, X. Internet of Things Monitoring System of Modern Eco-agriculture
Based on Cloud Computing. IEEE Access. 2019, 7, 37050–37058. [CrossRef]

18. Elijah, O.; Abd Rahman, T.; Orikumhi, I.; Leow, C.Y.; Hindia, M. An Overview of Internet of Things (IoT) and
Data Analytics in Agriculture: Benefits and Challenges. IEEE Internet Things J. 2018, 5, 3758–3773. [CrossRef]

19. Shaikh, Y.; Parvati, V.K.; Biradar, S.R. Connected vehicles and Internet of things. In Proceedings of the 2nd
International Conference on Telecommunication and Networks (TEL-NET), Delhi, India, 10–11 August 2017;
doi:10.1109/TEL-NET.2017.8343489. [CrossRef]

20. Singh, D.; Singh, M. Internet of vehicles for smart and safe driving. In Proceedings of the 2015 International
Conference on Connected Vehicles and Expo (ICCVE), Shenzhen, China, 19–23 October 2015; pp. 328–329.
[CrossRef]

21. Gartner Says 8.4 Billion Connected “Things” Will Be in Use in 2017, Up 31 Percent From 201 (Table 1).
Available online: https://www.gartner.com/en/newsroom/press-releases/2017-02-07-gartner-says-8-
billion-connected-things-will-be-in-use-in-2017-up-31-percent-from-2016 (accessed on 1 July 2020).

20

Sensors 2020, 20, 3770

22. IoT Report: How Internet of Things Technology Growth Is Reaching Mainstream Companies
and Consumers. Available online: https://www.businessinsider.com/internet-of-things-report?IR=T
(accessed on 1 July 2020).

23. Clayer, J.; Toffolon, C.; Choquet, C. Patterns, Pedagogical Design Schemes and Process for Instructional
Design. In Proceedings of the 2013 IEEE 13th International Conference on Advanced Learning Technologies,
Beijing, China, 5–18 July 2013; pp. 304–306.

24. Li, C.; Xue, Y.; Wang, J.; Zhang, W.; Li, T. Edge-Oriented Computing Paradigms: A Survey on Architecture
Design and System Management. ACM Comput. Surv. 2018, 51. [CrossRef]

25. Hunkeler, U.; Truong, H.L.; Stanford-Clark, A.J. MQTT-S - A publish/subscribe protocol for Wireless Sensor
Networks. In Proceedings of the Third International Conference on COMmunication System softWAre and
MiddlewaRE (COMSWARE 2008), Bangalore, India, 5–10 January 2008; pp. 791–798.

26. Armbrust, M.; Fox, A.; Griffith, R.; Joseph, A.D.; Katz, R.; Konwinski, A.; Lee, G.; Patterson, D.; Rabkin, A.;
Stoica, I.; et al. A View of Cloud Computing. Commun. ACM 2010, 53, 50–58. [CrossRef]

27. Gusev, M.; Dustdar, S. Going Back to the Roots—The Evolution of Edge Computing, An IoT Perspective.
IEEE Internet Comput. 2018, 22, 5–15. [CrossRef]

28. Toyama, S.; Hirayama, M. User Interface Design Method Considering UI Device in Internet of Things System.
In Proceedings of the 2018 6th International Conference on Future Internet of Things and Cloud Workshops
(FiCloudW), Barcelona, Spain, 6–8 August 2018; pp. 1–6. [CrossRef]

29. Ray, P.P. A Survey of IoT Cloud Platforms. Fut. Comput. Informatics J. 2016, 1, 35–46. [CrossRef]
30. Amazon AWS IoT Website. Available online: https://aws.amazon.com/es/iot/ (accessed on 1 July 2020).
31. Microsoft Azure IoT Website. Available online: https://azure.microsoft.com/es-es/overview/iot/

(accessed on 1 July 2020).
32. Watson IBM IoT Website. Available online: https://www.ibm.com/cloud/watson-iot-platform

(accessed on 1 July 2020).
33. Postscapes Tech Website. Available online: https://www.postscapes.com/internet-of-things-platforms/

(accessed on 1 July 2020).
34. Fog Computing: A New Paradigm for IoT Clouds. Available online: https://www.ionos.es/digitalguide/

servidores/know-how/fog-computing/ (accessed on 1 July 2020).
35. Shelby, Z.; Hartke, K.; Bormann, C. The Constrained Application Protocol (CoAP). RFC 2014, 7252, 1–112.
36. OASIS. Advanced Message Queuing Protocol (AMQP) Version 1.0; Part 3: Messaging. 2012.

Available online: https://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-messaging-v1.0-os.html
(accessed on 1 July 2020).

37. Bellavista, P.; Corradi, A.; Foschini, L.; Pernafini, A. Data Distribution Service (DDS): A performance
comparison of OpenSplice and RTI implementations. ISCC IEEE Comput. Soc. 2013, 377–383.

38. Saint-Andre, P. Extensible Messaging and Presence Protocol (XMPP): Core. RFC 2004, 3920.
39. Guerra, H.; Garcia, A.M.; Gomes, L.M.; Cardoso, A. An IoT remote lab for seismic monitoring in

a programming course. In Proceedings of the 2017 4th Experiment@International Conference (exp.at’17),
Faro, Algarve, Portugal, 6–8 June 2017; pp. 129–130.

40. Patil, S.; Supriya, K.; Uma, M.; Shettar, R.B.; Kumar, P. Open Ended Approach to Empirical Learning
of IOT with Raspberry Pi in Modeling and Simulation Lab. In Proceedings of the 2016 IEEE 4th
International Conference on MOOCs, Innovation and Technology in Education (MITE), Madurai, India,
7–10 December 2016; pp. 179–183.

41. Tunc, C.; Hariri, S.; De La Peña Montero, F.; Fargo, F.; Satam, P.; Al-Nashif, Y. Teaching and Training
Cybersecurity as a Cloud Service. In Proceedings of the 2015 International Conference on Cloud and
Autonomic Computing, Boston, MA, USA, 21–25 September 2015; pp. 302–308.

42. El-Hasan, T.S. Internet of Thing (IoT) Based Remote Labs in Engineering. In Proceedings of the 2019
6th International Conference on Control, Decision and Information Technologies (CoDIT), Paris, France,
23–26 April 2019; pp. 976–982.

43. Fernández-Pacheco, A.; Martin, S.; Castro, M. Implementation of an Arduino Remote Laboratory with
Raspberry Pi. In Proceedings of the 2019 IEEE Global Engineering Education Conference (EDUCON),
Dubai, UAE, 9–11 April 2019; pp. 1415–1418.

21

Sensors 2020, 20, 3770

44. Leisenberg, M.; Stepponat, M. Internet of Things Remote Labs: Experiences with Data Analysis Experiments
for Students Education. In Proceedings of the 2019 IEEE Global Engineering Education Conference
(EDUCON), Dubai, UAE, 9–11 April 2019; pp. 22–27.

45. Rajurikar, N.S.; Kulkarni, S.V.; Patane, R.D. Implementation of centralized lab of an embedded web server
using CoAP protocol on cloud computing. In Proceedings of the 2017 2nd IEEE International Conference
on Recent Trends in Electronics, Information Communication Technology (RTEICT), Bengaluru, India,
19–20 May 2017; pp. 2267–2272.

46. Thibaud, M.; Chi, H.; Zhou, W.; Piramuthu, S. Internet of Things (IoT) in high-risk Environment, Health and
Safety (EHS) industries: A comprehensive review. Decis. Support Syst. 2018, 108, 79–95. [CrossRef]

47. BitScope Website. Available online: https://www.bitscope.com/product/blade/ (accessed on 1 July 2020).
48. Docker Website. Available online: https://www.docker.com/ (accessed on 1 July 2020).
49. Merkel, D. Docker: Lightweight Linux Containers for Consistent Development and Deployment. Linux J.

2014, 2014.
50. Mora, H.; Signes Pont, M.T.; Gil, D.; Johnsson, M. Collaborative Working Architecture for IoT-Based

Applications. Sensors 2018, 18, 1676. [CrossRef] [PubMed]
51. Coaty Website. Available online: https://coaty.io/ (accessed on 1 July 2020).
52. Docker Hub Website. Available online: https://hub.docker.com/ (accessed on 1 July 2020).
53. Docker Compose Website. Available online: https://docs.docker.com/compose/ (accessed on 1 July 2020).
54. Docker Swarm Website. Available online: https://docs.docker.com/engine/swarm/ (accessed on

1 July 2020).
55. Kubernetes Website. Available online: https://kubernetes.io/ (accessed on 1 July 2020).
56. Kubernetes Dashboard Website. Available online: https://kubernetes.io/docs/tasks/access-application-

cluster/web-ui-dashboard/ (accessed on 1 July 2020).
57. LoT@UNED Lab Manager Portal. Available online: https://lot-at-uned.mybluemix.net/ (accessed on

1 July 2020).
58. Caminero, A.C.; Hernández, R.; Ros, S.; Tobarra, L.; Robles-Gómez, A.; San Cristóbal, E.; Tawfik, M.;

Castro, M. Obtaining university practical competences in engineering by means of virtualization and cloud
computing technologies. In Proceedings of the 2013 IEEE International Conference on Teaching, Assessment
and Learning for Engineering (TALE), Kuta, Indonesia, 26–29 August 2013; pp. 301–306. [CrossRef]

59. Node-Red Website. Available online: https://nodered.org/ (accessed on 1 July 2020).
60. IBM IoT Watson Platform. Available online: https://cloud.ibm.com/docs/services/IoT?topic=iot-platform-

getting-started (accessed on 1 July 2020).
61. IBM Cloudant website. Available online: https://www.ibm.com/cloud/cloudant (accessed on 1 July 2020).
62. Muthiah, A.; Ajitha, S.; Monisha Thangam, K.S.; Viveka Vikram, K.; Kavitha, K.; Ramalatha, M. Maternal

ehealth Monitoring System using LoRa Technology. In Proceedings of the 2019 IEEE 10th International
Conference on Awareness Science and Technology (iCAST), Marioka, Japan, 23–25 October 2019; pp. 1–4.
[CrossRef]

63. Moustafa, H.; Schooler, E.M.; Shen, G.; Kamath, S. Remote monitoring and medical devices control in
eHealth. In Proceedings of the 2016 IEEE 12th International Conference on Wireless and Mobile Computing,
Networking and Communications (WiMob), New York, NY, USA, 17–19 October 2016; pp. 1–8. [CrossRef]

64. Liu, M.; Li, D.; Chen, Q.; Zhou, J.; Meng, K.; Zhang, S. Sensor Information Retrieval From Internet of Things:
Representation and Indexing. IEEE Access 2018, 6, 36509–36521. [CrossRef]

65. Tobarra, L.; Robles-Gómez, A.; Pastor, R.; Hernández, R.; Duque, A.; Cano, J. Students’ Acceptance and
Tracking of a New Container-Based Virtual Laboratory. Appl. Sci. 2020, 10, 1091. [CrossRef]

66. Liu, I.F.; Chen, M.C.; Sun, Y.S.; Wible, D.; Kuo, C.H. Extending the TAM model to explore the factors that
affect Intention to Use an Online Learning Community. Comput. Educ. 2010, 54, 600–610. [CrossRef]

67. Pastor, R.; Tobarra, L.; Robles-Gómez, A.; Cano, J.; Hammad, B.; Al-Zoubi, A.; Hernández, R.; Castro, M.
Renewable energy remote online laboratories in Jordan universities: Tools for training students in Jordan.
Renew. Energy 2020, 149, 749 – 759. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

22

sensors

Article

Block-Based Development of Mobile Learning
Experiences for the Internet of Things

Iván Ruiz-Rube *, José Miguel Mota, Tatiana Person, José María Rodríguez Corral

and Juan Manuel Dodero

School of Engineering, University of Cádiz, Avenida de la Universidad de Cádiz, 10, 11519 Puerto Real, Cádiz,
Spain; josemiguel.mota@uca.es (J.M.M.); tatiana.person@uca.es (T.P.); josemaria.rodriguez@uca.es (J.M.R.C.);
juanma.dodero@uca.es (J.M.D.)
* Correspondence: ivan.ruiz@uca.es

Received: 22 October 2019; Accepted: 9 December 2019; Published: 11 December 2019

Abstract: The Internet of Things enables experts of given domains to create smart user experiences
for interacting with the environment. However, development of such experiences requires strong
programming skills, which are challenging to develop for non-technical users. This paper presents
several extensions to the block-based programming language used in App Inventor to make the
creation of mobile apps for smart learning experiences less challenging. Such apps are used to
process and graphically represent data streams from sensors by applying map-reduce operations.
A workshop with students without previous experience with Internet of Things (IoT) and mobile
app programming was conducted to evaluate the propositions. As a result, students were able to
create small IoT apps that ingest, process and visually represent data in a simpler form as using
App Inventor’s standard features. Besides, an experimental study was carried out in a mobile app
development course with academics of diverse disciplines. Results showed it was faster and easier
for novice programmers to develop the proposed app using new stream processing blocks.

Keywords: Internet of Things (IoT); mobile apps; end-user development; App Inventor; block-based
languages; map-reduce

1. Introduction

The Internet of Things (IoT) concept has several definitions, as involved technologies are
continually evolving. IoT is defined as “a network that connects uniquely identifiable things to
the Internet” [1]. These things have sensing and actuating capabilities and can be programmed,
such that data can be collected and their state can change. IoT potentialities enable the development of
a significant number of applications for improving citizens’ life. Smart homes and buildings, smart
cities, mobility and transportation, healthcare, agriculture and industry are some of the main areas of
IoT application [1]. For a rapid materialization of IoT, the symbiosis among the physical world and the
cyber world must be harmonious [2]. Interactions between humans and computing-enabled objects
must be smarter and opportunistic [3]. As it may happen with humans’ intelligence [4], the smartness
of IoT things relies heavily on their sensory, interactive capabilities. In this vein, smart interactive
objects enable creating tangible things to do different tasks in different application domains [5].

The development of smart IoT applications usually requires strong programming skills,
which commonly exceed people’s abilities. However, in recent years, several projects, such as Arduino
and Raspberry Pi, aimed not only at professionals but also educators and students, have influenced
the IoT expansion. These initiatives include both hardware platforms and programming tools, and a
user community is growing around them.

Since the notation used in programming languages has a tremendous impact on novices [6],
various tools to program IoT microcontrollers and microcomputers have emerged. These tools are

Sensors 2019, 19, 5467; doi:10.3390/s19245467 www.mdpi.com/journal/sensors23

Sensors 2019, 19, 5467

based on block-based languages and proved to be useful for novice programmers. Learners of
block-based languages depicted greater gains in algorithmic thinking [7] and a higher interest in
computer science than those using text-based environments [8]. Differences between block-based
languages and text-based languages often fade after learners transfer their acquired knowledge of
computer programming to more professional, text-based languages and environments [9].

Currently, the most commonly used block-based programming tools, namely Scratch and App
Inventor, provide capabilities to connect with external hardware devices, such as Arduino. However,
they present some limitations when it comes to developing IoT applications, namely: (1) the absence
of an easy mechanism for ingesting and processing event data streams and (2) the lack of usable
mechanisms for visually representing data.

To facilitate authoring of IoT mobile apps, several visual components for a custom version of
App Inventor, as well as a set of extensions for its block-based programming language, have been
developed. With these components and language extensions, users can easily create apps that ingest
data streams from available sensors, process them using a map-reduce programming style and then
visualise the results of data processing graphically. The goal of this paper is to investigate how easy it
is for non-experts to leverage such improved features to create their own smart IoT applications.

The block-based language approach followed in our research proposal has some limitations,
which have been described in the literature. First, it may be applicable only for novice programmers
who are learning to create their own smart IoT applications [9]. The research claims and results
are not directly transferable to professional, text-based programming languages or even to other
not block-based, visual programming paradigms [10]. Second, the use of programming concepts
that are relevant to create smart IoT applications (such as state initialisation [11], parallelism [12],
anonymous functions [13] and higher-order functions [14]) were adapted to visual and block-based
languages. However, there are no evidences of learning improvements thanks to the use of such
end-user development (EUD) approaches. Therefore, the use of block-based languages as an EUD
approach for creating smart IoT applications may have limitations, which have to be overcome by
more extensive research, as intended in this work.

The rest of the paper is structured as follows: the background and related works are presented in
Section 2. Section 3 describes the main contribution. Two case studies are included in Sections 4 and 5.
The former presents a usability study conducted with students of a computer programming
fundamentals course whereas the latter was targeted at university lecturers. Finally, Section 6 discusses
the results and draws the conclusions of this research.

2. Background & Related Works

IoT solutions are composed of hardware and software elements. Guth et al. [15] propose an
IoT reference architecture from a comparison of various open-source (SiteWhere, OpenMTC and
FIWARE) and proprietary (Amazon Web Services IoT) IoT platforms. Such architecture includes a
set of sensors and actuators at the lower level. On the next level up, a hardware device is connected
by a wired connection or wirelessly to sensors and actuators. Data communication protocols are
required to manage the constraints of the smart devices, as well as gateways to translate data between
different protocols and to forward communications. Middleware [15,16] processes the data received
from the connected devices (e.g., by the execution of condition-action rules) to provide them to
connected applications and sends commands to be executed by the corresponding actuators. Finally,
IoT applications allow device-to-device and human-to-device interactions [17]. In the latter, mobile
app-based smart interactive experiences can be provided for end-users.

Existing initiatives for learning and developing IoT solutions as well as block-based end-user
development tools and their applications for creating IoT mobile experiences are described below.

24

Sensors 2019, 19, 5467

2.1. Initiatives for Learning and Developing IoT Solutions

Arduino and Raspberry Pi are some of the most popular platforms used for educational
purposes [1,18,19], with a huge development community. Arduino is a programmable circuit board,
which can be connected with sensors and actuators of many types. Raspberry Pi is a single-board
computer to run programs in a multitasking environment. However, the analog-digital conversion is
not available onboard and thus additional hardware is required for interfacing with analog sensors
such as photocells, joysticks and potentiometers.

Some initiatives and educational projects were carried out in order to teach IoT technologies for
undergraduate and university students [20,21]. For example, in a project-based teaching and learning
approach conceived for an IoT course [22], Raspberry Pi is used to devise and implement IoT designs.
Other project-based learning courses for learning wired and wireless networking techniques have
been offered to electrical and computer engineering students [23]. The use of microcontrollers with
network connectivity and without complex operating systems provides cost-effective, well-supported
and flexible platforms for developing IoT applications.

Moreover, the educational research outcome of teaching IoT device prototyping in a practical,
real problem-based setting is presented [24] as a means for teaching computer science and software
engineering. An example course outline for planning learning experiences in IoT prototyping is
described along with a general assessment framework and best practice recommendations in order to
facilitate personalised learning in analogous contexts.

Some educational approaches are based on the pocket labs (PL) concept to stimulate students’
initiative and creativity. PL allow learners to experiment with real equipment in any place and at any
time [25]. Despite that IoT and PL are not initially interrelated, the authors present a real case of IoT
teaching practice based on Arduino and accompanying shields that includes sensors and actuators.
PLs are combined with the online Tinkercad software tool to prototype and simulate electronic designs
that include the Arduino boards.

Other initiatives for integrating IoT technologies in existing teaching-learning case studies were
developed. For example, an IoT-based learning framework that integrates IoT and hardware/software
technologies is used as part of a software engineering course for embedded system analysis and
design [26]. Specifically, the authors introduced a lab development kit composed by Arduino and
Raspberry Pi boards, sensors and XBee modules for providing wireless communication.

Common general-purpose programming languages can be used for developing IoT
applications [19]. However, since IoT systems involve a wide variety of hardware and software
components, depending on a range of distributed system and communication technologies, developing
IoT applications is time-consuming and complex. Hence, a variety of IoT libraries, such as
CoAPthon [27], and frameworks [28], such as IDeA, FRASAD, D-LITe, IoTLink, WebRTC based
IoT application Framework, Datatweet, IoTSuite and RapIoT, have been developed to manage
those complexities.

2.2. End-User Development Tools for IoT

Modern software programming tools hide much of the complexity of traditional programming
languages. Recent low code software engineering approaches have been successful both for IoT [29]
and for more general mobile application development [30]. Their general objective consists in making
application creation easier for people without programming skills. This goal is shared by the research
field known as end-user development (EUD). A recent review on this topic differentiates between
end-user programming (EUP) and other software engineering activities that span the entire software
development lifecycle [31]. The review was recently completed by another author, focusing on current
EUD tools for developing IoT and robot applications [32].

Among EUP tools, block-based programming environment features are noteworthy [33] to enable
composing programs without dealing with the syntactic issues of textual languages. Among such
block-based languages and environments, Scratch [34,35] is very popular to create interactive

25

Sensors 2019, 19, 5467

games, stories and animations, as well as to share such creations on the Web. Scratch computer
programs are built by dragging and dropping blocks that represent common programming elements,
such as variables, expressions, conditions and statements. Another block-based EUP approach for
robotic applications is Phratch, which is a Scratch-like live programming environment [36]. Besides,
App Inventor [37,38] is an open-source block-based programming tool. This tool enables users
without prior programming experience to create apps specifically for smartphones and mobile devices.
In particular, it makes mobile app deployment easier for the end-user. Additionally to other tools’
amenities, App Inventor allows end-users to perform interface design and software deployment
tasks, which belong to the realm of EUD beyond EUP. End-users can drag, drop and arrange various
interface and non-visible components through a visual designer and then use a block language editor
to program the app logic behaviour in order to create and deploy fully functional mobile apps. App
Inventor provides event handling as a form of trigger-action programming (TAP), which proved to be
particularly suitable to define bespoke behaviours to respond to the multiple events that may occur in
an IoT context [39]. End-users specify the behaviour of a system as events or triggers and response
actions when the events occur [40].

Despite the availability of libraries and frameworks to work with IoT technologies, it is very
complicated to find EUD solutions to assist non-IT professionals in a particular area or topic to develop
their own IoT consumer applications and smart user experiences. For example, ScratchX [41] is an
experimental platform that allows people to test experimental functionalities built by some developers
for the Scratch visual language. These experimental extensions enable apps to integrate with web
services and external hardware, such as Arduino or Raspberry Pi.

On the other hand, the MIT IoT App Inventor project [42] allows students, teachers and makers to
implement IoT projects in the same way as they develop regular mobile apps. This project provides
users with components and block extensions to read data from a great variety of sensors (e.g., moisture,
pressure, temperature, noise, etc.) and control a multiplicity of actuators (e.g., buzzers, lights, motors,
etc.) As apps run on mobile devices, they can take advantage of all built-in features provided by App
Inventor, but they can also use the apps to interact with objects all around. Besides, UDOO [43] is a
combined set of open hardware and software technologies to allow novice makers to create their own
digital objects connected to the cloud and to define custom behaviour logic for sensors and actuators.
In addition to the physical devices, UDOO includes an App Inventor extension to handle sensors and
actuators from within mobile apps. Finally, IoT Inventor [44] is a web-based integration platform,
not based on but inspired by App Inventor, with a friendly drag-and-drop composer interface to build
personalised and reconfigurable services using smart IoT-enabled things.

All of the described extensions are targeted to handle sensors and actuators but they do not
provide support for easily ingesting, processing and visualizing data.

3. Creating IoT Mobile Apps with VEDILS

VEDILS [45] is a visual environment for designing interactive learning scenarios. It is an
authoring tool targeted at users without programming skills who want to create their own mobile
apps. The platform is based on App Inventor, the programming tool to build apps for mobile devices.
The current version requires Android devices, though an iOS-based version is currently being devised
by MIT. The development environment relies on the Blockly library for its visual programming
language based on blocks.

App Inventor provides several components for designing mobile apps’ user interfaces as well
as other features, including multimedia elements, communication with the device sensors, sharing
through social networks, etc. In addition to the built-in components provided by App Inventor,
VEDILS features new components to enrich the apps with virtual and augmented reality experiences
and to serve multi-modal external Human Machine Interface (HMI) devices, such as hand gesture
sensors or electroencephalography (EEG) headsets, among other features. The platform was also
used to conduct a study on the suitability of visual languages for non-expert robot programmers [46].

26

Sensors 2019, 19, 5467

Regarding IoT computing, several components and blocks were developed for VEDILS to ingest,
process and visualise data from a diversity of sensors.

3.1. Ingesting IoT Data Streams

App Inventor manages the following block types for each component: property getters and setters
(green blocks), functions (blue blocks) and event handlers (yellow blocks). VEDILS extends those with
a particular type of block (similar to event handlers) for non-visual components that issue a continuous
flow of data, as is the case of both internal and external sensors. These kinds of components (red
blocks) provide the app developer with a data stream suitable to be treated with the processing blocks
described in Section 3.2; these are triggered when data from the sensor are ingested for a predefined
time window.

One of the most common ways of receiving data from an IoT sensor and sending commands to
an actuator is via a Bluetooth connection. Thus, the built-in BluetoothClient component was extended
with the new StreamDataReceived block (see Figure 1), which provides the data stream as well as a new
SecondsToGetStreamData property to set the time period to fetch new data from the Bluetooth server.

(a) Editor properties (b) Visual blocks

Figure 1. Ingesting stream data from Bluetooth external devices.

In addition, every new VEDILS component that provides communication with internal or external
devices can support the streaming blocks. For example, the BrainwaveSensor component, which enables
to detect brain activity by means of an EEG headset, includes specific blocks for ingesting stream
data from regular fast Fourier transform (FFT) bands (i.e., Theta, Alpha, Low Beta, High Beta and
Gamma) of EEG channels (see Figure 2). It also includes a TimeToStreamBandsData property to set
the time window. The current implementation works with the Emotiv Epoc+ and Insight headsets.
Thus, this component enables a new range of mobile applications to monitor emotions, track cognitive
performance and even control objects through learning a set of mental activity patterns that can be
trained and interpreted as mental commands.

The blocks of Figure 2 were developed as Java class methods that support external and internal
sensors. The data flow is internally managed as Java 8 streams. Besides, additional classes based on
threads and the Java Timer API were required to periodically check data availability.

27

Sensors 2019, 19, 5467

(a) Editor properties (b) Visual blocks

Figure 2. Ingesting stream data from electroencephalography (EEG) headsets.

3.2. Processing IoT Data Streams

In order to address the issue of treating IoT data, several data processing blocks were developed
and delivered with VEDILS (see Figure 3):

• Filter block: removes the elements that do not meet a specific condition from an input stream.
For example, in a stream containing a set of numbers, developers could filter the odd numbers
obtaining a new stream with only the even ones.

• Map block: applies an operation to each element of an input stream. For example, transforming a
stream of lowercase words into a stream of uppercase words.

• Reduce (a) block: combines the elements contained in the input stream by applying the binary
operator specified as a parameter. The combiner function must combine two numbers to return a
new one, such as the maximum or minimum value.

• Reduce (b) block: combines the elements contained in the input stream, by applying one of the
built-in mathematical operations. For example, computing the average or standard deviation of a
50-item stream.

• Sort (a) block: produces a new stream with the elements of the input stream according to the order
induced by the comparator specified as a parameter. The comparator must be a function that
returns a negative number if item1 is less than item2; a positive one if item1 is higher than item2; or
zero if both items are equal.

• Sort (b) block: produces a new stream with the elements of the input stream according to its
natural order, i.e., numerically or alphabetically. The block has a field to specify whether to apply
an ascending or descending sorting.

• Limit block: shortens the stream size to the specified length. For example, collecting the first
10 items in the stream.

All the previous blocks are intermediary operations, except for the Reduce block, which is terminal.
The intermediary blocks can be indistinctly chained, whereas the Reduce blocks must always appear
on the left of the sequence of operations.

28

Sensors 2019, 19, 5467

Figure 3. Visual blocks for processing stream data

Extensions for the visual programming language itself requires not only Java code but also other
languages. The visual appearance of each block of the Streams palette is defined by a JavaScript
fragment using the Blockly library API, whereas its run-time behaviour is defined by generating YAIL
code. Young Android Intermediate Language (YAIL) is a set of abstractions for Kawa, a Java-based
implementation of the Scheme functional language. Figures 4 and 5 show the code required to develop
the limit block.

Figure 4. JS fragment for defining the Limit block with Blockly.

Figure 5. JS fragment for generating the Young Android Intermediate Language (YAIL) code of the
Limit block.

3.3. Visualising IoT Data Streams

App Inventor does not provide built-in capabilities to include charts or data tables in the apps.
Thus, two new visible components were integrated into VEDILS for allowing developers to equip

29

Sensors 2019, 19, 5467

their apps with those kinds of visualisations (see Figure 6). The Chart component enables the creation
of simple graphics such as bars, lines or pie charts, whereas the DataTable component is intended to
present the data in a tabular format. Both components can be fed with a data stream from any sensor
and they are customisable, for example, by configuring the category and value axes of charts.

(a) Editor properties (b) Visual blocks

Figure 6. Visualizing stream data with the chart component

Both the Chart and DataTable components were developed as Java classes that inherit from the
AndroidViewComponent superclass, already included in App Inventor. In run-time, these components
provide an embedded WebViewer for the app screen, which points to an external HTML. That web
page receives a JSON string containing the app data and renders it via the Google Chart API.

4. Evaluating IoT Mobile App Development with Students

This section presents a usability study of the VEDILS components for IoT computing. This test
is aimed at checking whether these IoT components are suitable for learners when programming
end-user IoT mobile apps. The test was defined and executed by following the guidelines provided by
Rubin et al. [47].

4.1. Study Design

A three-hour workshop was conducted with students of a computer programming fundamentals
course from a vocational education and training module. This workshop was implemented in the frame
of a Code Week initiative (https://codeweek.eu/view/242496/desarrollo-sencillo-de-apps-moviles-
para-iot). The research question for this study was the following: is it easier for students to develop
IoT mobile apps using VEDILS than using App Inventor?. To evaluate the legibility degree and ease of
use of the IoT blocks compared to App Inventor’s, we designed the following experimental scenario:
During the first hour, students learned about IoT, its basic concepts, components and architectures.
Later on, they learned about the features and applications of the Raspberry Pi single-board computer
and Sense HAT add-on. Then, they were presented with the running IoT sample app described below.
The instructor taught students how to design the UI of the app as well as the blocks required to connect
and disconnect the Raspberry Pi device through Bluetooth. Later on, the students were provided with
a base project for both App Inventor and VEDILS to be completed during the rest of the session (see
Figure 7a). Finally, they were asked to fill out a short questionnaire, including both quantitative and
qualitative question items.

A quasi-experimental study was conducted with the students. One half of the participants created
first the app with App Inventor and then with VEDILS; whereas the other half did it in reverse order.

30

Sensors 2019, 19, 5467

To complete the app projects, the students were also provided with step-by-step tutorials to guide the
development with both tools.

(a) (b)

Figure 7. Developing the mobile app for interacting with the external Internet of Things (IoT) device.
(a) Students programming the mobile app; (b) Android app communicating with the Raspberry and its
Sense HAT add-on.

4.2. The Sample App

The proposed app shows the average temperature received from the IoT sensor for the last
10 s. In order to bring the IoT app development closer to a more realistic scenario, the temperature
measurements of the Raspberry Pi were generated from a simulation server. The python server running
in the device generated random value series in the [14, 104] interval, measured as degrees Fahrenheit.
Occasionally, abnormal values (i.e., 127◦F) were generated to emulate measurement errors. The app
had to obtain the temperature data, convert it into Celsius degrees, remove outliers and compute the
average of the series.

4.2.1. User Interface Design

The app layout (see the picture in Figure 7b) is based on a vertical arrangement composed of
several elements. At the top of the screen, there are buttons for connecting and disconnecting to/from
the Raspberry Pi. A chart depicting the evolution of the temperature is included in the centre of the
screen. At the bottom of the screen, there are buttons for sending commands to change the Sense
HAT LED panel background colour. The LED panel in the picture shows the temperature measured
every second.

From the user interface perspective, the only difference between the App Inventor and VEDILS
versions is that the former requires a Canvas component, whereas the latter uses the new Chart
component. Nevertheless, from the user programming perspective, there are some remarkable
differences, as explained next.

4.2.2. Programming with App Inventor

A Clock component must be used to periodically check if there is new data to receive via the
Bluetooth connection. Then, the developer must call the ReceiveSignedBytes method and then iterate
through the data collection. For each individual value, a local variable is used to store the result
of applying the conversion formula between the two measurement scales. Later on, a conditional
statement must be applied to check if the calculated value is not an outlier. If so, that value must
be added to an accumulator variable and increment by one the counter of valid measurements. Later
on, the accumulator variable must be divided by the counter to compute the average (see Figure 8).
Two text labels are accordingly updated to show the received raw of data and the computed average.
Finally, the updateChart procedure is called to update the visual representation. Figure 9 shows how

31

Sensors 2019, 19, 5467

the DrawLine block in the Canvas must be used to depict the temperature along time as a line chart.
This block requires a pair of (x,y) coordinates for both source and target points. Since the (0,0) point of
the Canvas corresponds with its left upper corner, it is necessary to turn the temperature values into
the proper values for the Y-axis. Besides, the X-axis must be consequently moved forward for each
time instant. Some other variables must also be used to control the coordinates. Furthermore, at the
beginning of the drawing process and every time the canvas right-edge is reached, the drawing area
must be cleared and some horizontal lines must be drawn to represent certain temperature milestones
(0◦, 10◦, etc.). Besides, some variables must be reinitialised.

Figure 8. Processing temperature data with App Inventor.

Figure 9. Drawing temperature data with App Inventor.

4.2.3. Programming with VEDILS

With VEDILS (see Figure 10), the developer must handle the StreamDataReceived block, which
directly provides a data stream of temperature measurements. This data stream is pipelined through
a series of processing steps. With the Map block, every item in the stream is mapped into its
corresponding Fahrenheit value; with the Filter block, outliers are discarded according to the validity
condition; and finally, with the Reduce block, the data stream is summarized by computing an average.
The AppendData block is used to depict the average temperature along time in the line chart. Thus,

32

Sensors 2019, 19, 5467

the computed value must be sent to the Chart component, together with the current timestamp
provided by Clock. Previously, the Chart must have been configured with the category and value axes
(see Figure 11).

Figure 10. Processing temperature data with VEDILS.

Figure 11. Drawing temperature data with VEDILS.

4.3. Data Compilation

The data collection was performed without interacting with the subjects during the experiment
(i.e., an indirect method). The online questionnaire designed for the survey includes, in addition
to the consent form, several questions to determine the initial status of participants as well as to
compile the students’ opinions after the test. They were asked about their expertise level creating
software programs with visual languages and with text-based programming languages. Regarding
the post-test, some questions related to the perceived ease of use of App Inventor and VEDILS
were included. They deal with the tool usability for (i) connecting/disconnecting via Bluetooth and
sending commands to the IoT sensor; (ii) consuming temperature data from the sensor, applying
a transformation for changing their measurement scale, removing the outliers and computing the
average; and (iii) drawing a chart with the temperature evolution. The answers to these questions
follow a five-level Likert scale (1-Strongly disagree, 2-Disagree, 3-Neither agree nor disagree, 4-Agree
and 5-Strongly agree). The participants were also asked about their intention to use App Inventor
or VEDILS to create more IoT projects. Study data as well as the resources used are linked in the
Supplementary Materials.

4.4. Analysis and Findings

This study aimed at checking whether it is easier for students to develop the proposed IoT mobile
app using VEDILS rather than with App Inventor. Ten students (eight men and two women) aged 24
(stddev = 2) participated in the study. All of them were first-year students of a vocational course in
web development. By the time the workshop was conducted, they had not yet learned any textual
programming tool. They had only studied and used the App Inventor platform. Only one of them had
previous experience with traditional text-based coding languages.

All students agreed that it is easy (avg = 4.0, stddev = 0.0) to develop the routines for
connecting/disconnecting via Bluetooth and sending commands to the IoT sensor with App Inventor
and VEDILS (both tools share the same blocks for that purpose). Regarding the temperature data
ingestion and processing steps, most students neither agree nor disagree (avg = 2.77, stddev = 0.40)

33

Sensors 2019, 19, 5467

that these steps are easy to develop with App Inventor. Nevertheless, most students agreed that it is
easy to develop these routines with VEDILS (avg = 3.88, stddev = 0.26). This perceived ease of use is
even more substantial when developing the temperature evolution chart: the App Inventor Canvas
component (avg = 2.66, stddev = 0.44) versus the VEDILS Chart component (avg = 4, stddev = 0.23).
Finally, regarding the question about which tool they would use to develop mobile apps that consume
data from IoT sensors and depict them in a chart, 66.6% of the participants chose VEDILS, 11.1% chose
App Inventor, whereas the rest did not indicate a preference. In short, all participants rated VEDILS
better than App Inventor, except for the student who already had coding skills.

A total of 177 blocks were required for developing the App Inventor version of the app, whereas
only 84 were required in VEDILS. In both cases, procedures were used to avoid as much as possible
the number of duplicate blocks. Accordingly, the difference in the size of the projects may relate to the
students’ perceived ease of use for both tools. That difference is particularly pronounced when it comes
to presenting the temperature chart because developers must handle many details of the drawing
process. The results are also consistent with the qualitative opinions expressed by the students, who
highlighted the saving of programming effort required to consume, process and visualise IoT data
thanks to the abstractions provided by VEDILS.

5. Evaluating VEDILS Data Processing Blocks with Academics

While the above section evaluates the components and language extensions provided by VEDILS
for IoT computing, this case study solely focuses on the data processing blocks. The main objective
is to check the development agility and the usability of the stream blocks compared to the standard
built-in blocks for processing data. The design, implementation and analysis of the experimental study
are presented below.

5.1. Study Design

The study was performed through six editions of an introductory course of mobile app
development with App Inventor/VEDILS between January and February 2018. These courses are part
of the Cádiz university’s docent innovation program, in which several IT-related courses are regularly
delivered to their associated lecturers and researchers.

The reference framework for establishing the hypotheses of this study is based on the potential
benefits of certain computer programming paradigms over others [48]. Some authors explored
techniques for introducing parallelism concepts, anonymous procedures and higher-order functions
into block languages [12–14]. In this particular case of application development, we analyse the
ease and agility of using block-based versions of the map-reduce constructs from the functional
programming paradigm versus the iterative constructs (i.e., loops) from the imperative programming
paradigm. The research questions posed for this study are the following: RQ1—Is there any difference
in users’ perception of the complexity of the stream processing blocks? RQ2—Is it easier for users
to develop apps that collect and process data samples using functional blocks rather than using
imperative blocks? and RQ3—Is it faster for users to develop apps that collect and process data
samples using functional blocks rather than using imperative blocks?

To find answers to the research questions, the following scenario was carried out. First, all the
academics interested in enrolling in the course were arbitrarily allocated in one of the (six) course
editions. Each course lasted five hours and the participants were first taught with a short introduction
to the educational applications of mobile devices. Next, the instructors explained the fundamentals of
visual programming and the VEDILS tool’s features.

Second, to reinforce and consolidate what was learned, participants created a number of
educational mobile apps. These apps leverage the smartphone sensory and multimedia elements
provided by App Inventor as well as the augmented reality capabilities provided by VEDILS.
During the course, all the participants had to develop the same apps, except for one that emulates dice
rolling. In addition to simulating the dice, in three of the course editions attendants who represented

34

Sensors 2019, 19, 5467

the control groups had to include an additional routine to calculate the count of odd numbers in a
sequence of dice roll samples, whereas in the other three editions, attendants who represented the
experimental groups had to program the count of even numbers. For the control groups, the attendants
were accordingly taught about the loop statements for data processing, whereas for the experimental
groups, the participants were taught about stream blocks.

Finally, the course attendants were asked to develop a citizen science mobile app by themselves.
In this vein, smartphones enable to automate data collection and enrich observations with photographs,
sound recordings and global positioning system (GPS) coordinates using embedded sensors [49].
The app requirements were: (i) to simulate the input of a numerical measurement of an external
phenomenon and (ii) to compute the average of the collected measurements, excluding values out of a
permitted value range.

The development of the citizen science app was required to obtain the course completion certificate.
The assignment delivery was due within two weeks of course completion. In addition to submitting
the developed apps, an online questionnaire had to be filled out. Answers to the questionnaire were
analysed using quantitative techniques.

5.2. Data Compilation

A total of 45 users attended the VEDILS course. Data collection was performed without interacting
with the subjects through an online questionnaire. The survey included questions related to the
participants’ knowledge area, age, gender, years of teaching and research experience, highest academic
degree obtained and prior expertise in creating computer programs with a visual and/or text-based
programming language. Regarding the post-test, questions related to the perceived ease of use of App
Inventor and VEDILS were included. These questions pointed to several aspects, such as the use of
variables and data lists, control flow statements and loop blocks (for the control groups) and the use of
stream blocks (for the experimental groups). In addition, similar questions were included to check the
participants’ self-confidence when developing the citizen science app. The answers to all the questions
were on a five-level Likert scale.

Besides, all the app project files submitted to the learning management store (i.e., Moodle) for
the instructor’s review were subsequently processed through a data integration process for analytic
purposes. Among other data, the following were automatically extracted: time spent to develop the
app, the number of blocks used, number of debugs and compilations required to complete the app.
Study data as well as the resources used are linked in the Supplementary Materials.

5.3. Analysis and Findings

The 45 participants (17 women and 28 men) were, on average, 41 years old, had 13 years of
teaching experience and 11 years of researching experience. Furthermore, 62.22% of the academics
had a Ph.D. Their background is as follows: Arts and Humanities (2.22%), Computer Science (20%),
Engineering and Architecture (4.44%), Health Sciences (17.78%), Laws and Social Sciences (28.89%)
and Natural Sciences (26.67%). In terms of their previous programming experience, from nothing (1) to
expert (5), they had scarce visual (avg = 1.82) and textual (2.15) programming skills. Overall, 25 subjects
were part of the control groups, whereas the experimental groups were composed of 20 subjects.

Tables 1 and 2 show the users’ perception of the stream processing blocks complexity and the ease
of development of the app created to collect and process data samples. Data are grouped in the table
according to the participants’ gender, academic degree, knowledge area and previous experience with
visual and textual programming languages.

35

Sensors 2019, 19, 5467

Table 1. Results of the survey with academics: perceived ease of use (the italic font shows the average
and chi-squared values whereas the bold one indicates significant differences).

User Profile Loop Blocks Stream Blocks Average Chi-Squared

Gender

Man 3.71 3.69 3.71 0.72
Woman 3.73 4.40 3.94 0.55

Chi-squared 0.61 0.41
Academic degree

Non-doctorate 3.77 4.00 3.88 0.09
Doctorate 3.68 3.82 3.75 0.24

Chi-squared 0.46 0.04

Knowledge area

EHSE 4.00 3.64 4.00 0.48
SSH 3.22 4.75 3.22 0.29

Chi-squared 0.46 0.17

Experience with visual programming languages

Non-experienced 3.89 4.00 3.67 0.31
Experienced 4.57 3.60 4.17 0.02
Chi-squared 0.19 0.01

Experience with textual programming languages

Non-experienced 3.21 3.83 3.54 0.58
Experienced 4.36 4.00 4.24 0.46
Chi-squared 0.17 0.32

All academics

Academics 3.72 3.89 3.80 0.83

Table 2. Results of the survey with academics: ease of development of the app (the italic font shows
the average and chi-squared values whereas the bold one indicates significant differences).

User Profile Loop-Based Stream-Based Average Chi-Squared

Gender

Man 3.07 4.08 3.57 0.17
Woman 2.81 3.33 3.00 0.37

Chi-squared 0.48 0.05

Academic degree

Non-doctorate 2.88 4.25 3.53 0.31
Doctorate 3.00 3.54 3.25 0.60

Chi-squared 0.23 0.32

Knowledge area

EHSE 3.37 3.93 3.65 0.63
SSH 2.22 3.60 2.71 0.18

Chi-squared 0.23 0.29

Experience with visual programming languages

Non-experienced 2.55 3.71 3.09 0.05
Experienced 4.00 4.20 4.08 0.48
Chi-squared 0.06 0.52

Experience with textual programming languages

Non-experienced 2.07 3.54 2.82 0.01
Experienced 4.09 4.50 4.24 0.54
Chi-squared 0.00 0.11

All academics

Academics 2.96 3.84 3.36 0.13

36

Sensors 2019, 19, 5467

Concerning the participants’ gender, women perceived that the stream blocks were easier to use
(avg = 4.4) than for men (avg = 3.69) but interestingly enough, men were the ones who found the
app development more comfortable with those blocks (man’s avg = 4.08 vs. woman’s avg = 3.33).
Furthermore, non-doctorates found the development much easier with stream blocks (avg = 4.25) than
the traditional ones (avg = 2.88). Besides, Social Sciences and Humanities (SSH) academics perceived
the stream blocks easier to use (avg = 4.75) compared to the Earth & Health Sciences and Engineering
(EHSE) lecturers (avg = 3.64). SSH academics also found it difficult (avg = 2.22) to develop the app
with the loop blocks, whereas they did not have that much trouble with the stream ones (avg = 3.6).

It is interesting to note (p < 0.05) that users with previous experience in visual programming
languages perceived loop blocks (avg = 4.57) easier than stream blocks (avg = 3.56). Nevertheless,
there is a significant difference (p < 0.05) in the fact that academics without experience with visual
languages developed the app easier with the map-reduce blocks (avg = 3.71) than with the standard
loop blocks (avg = 2.55). As expected, there is also a significant difference (p < 0.05) concerning the
ease of development of the proposed app with the map-reduce blocks (avg = 3.54) compared to the
standard loop blocks (avg = 2.07) for academics without experience with textual languages.

Regarding the apps the lecturers had to create as final assignment of the course, 39 out 45 were
correctly developed: 16 apps use the traditional loop blocks and 23 use the stream blocks. Table 3
shows the direct metrics obtained from the app projects. As can be observed, all the apps which had
to be developed with stream blocks were completed. The remaining six apps were expected to be
developed using the traditional loop blocks. On average, three hours were needed to develop the app
with the standard loop blocks, whereas fewer than two hours were required to create the same app
with the new stream blocks. That is also tested with a significant difference (p < 0.05). Furthermore,
the average number of builds and debugs performed for the stream-based apps is fewer than for the
loop-based one.

Table 3. Indicators of the developed apps (the italic font shows the average and Mann-Whitney U Test
values whereas the bold one indicates significant differences).

% Completion Minutes Spent Number of Debugs + Builds

Loop-based 72% 180.71 13.25
Stream-based 100% 111.97 9.74

Average 86.66% 140.17 11.18
Mann-Whitney U Test 0.024 0.16

To sum up, with regard to the question (RQ1), there is no difference in the users’ perception of the
complexity of the stream processing blocks (avg=3.89) and the loop blocks (avg = 3.72). Concerning
whether it is easier for users to develop apps which collect and process data samples with functional
blocks rather than with imperative blocks (RQ2), the participants agreed that the development of the
requested app was easier with the map-reduce blocks (avg = 3.84) than with loop ones (avg = 2.96).
Finally, the indicators obtained for RQ3 point that it is faster for users (100% completion of the projects,
a fewer number of debugs required to develop the app and a significant difference (around 38%) in
saving development time) to collect and process data samples with functional blocks rather than with
imperative blocks.

6. Discussion and Conclusions

Developing smart user experiences based on IoT technologies is a very complicated task, especially
for non-IT professionals. To address these barriers, some of the popular block-based tools aimed at
learners in computer programming (e.g., Scratch or App Inventor) were extended with modules to
communicate with external hardware. However, they do not provide adequate support for easily
ingesting, processing and visualising data from sensors.

37

Sensors 2019, 19, 5467

In this research, some components and blocks developed explicitly for a custom version of App
Inventor, called VEDILS, were proposed. They are devised to facilitate the ingestion of data from
sensors in time intervals, to process received data by using a pipelined sequence of mapping, filtering
and reducing operations, and finally, to represent them graphically or in a tabular format.

Two studies, namely a quasi-experimental study conducted with students and an experimental
with academics, were conducted to evaluate the contribution. From the first study, students considered
that it was easier for them to develop the routines for ingesting, processing and visualising data
from the external temperature sensor with the VEDILS IoT features rather than with the equivalent
components and blocks in App Inventor. From the second study, aimed at only checking the data
processing blocks, participants did not perceive stream blocks easier than the loop blocks. Nevertheless,
with statistical significance, it was faster for academics to develop the proposed app with the stream
blocks, and easier specifically for novice programmers.

Additionally, threats to validity must be taken into account. To maximise the internal validity and
the construct validity, we maintained a detailed protocol for both studies. Peer researchers reviewed
them, and actions were considered to minimise bias. In the first study, the students completed the app
development projects for both App Inventor and VEDILS but in reverse order to minimise the learning
effect on the subjects. In the study conducted with academics, they were randomly distributed into
different groups. In addition, every course edition was taught with the same instructors (also the
authors of this paper). Furthermore, all course attendants were required to develop the same app with
the same requirements to ensure the count of minutes spent, debugs and builds required to create
the apps were not affected by other factors. Apart from the data automatically extracted from the
developed projects (time spent, number of builds and number of debugs), the rest of the variables used
for our experiments to measure user perceptions are subjective so that they can also be considered as
validity threats.

The limited size of the student sample can be viewed as an external validity threat. Moreover,
although the second study has a user sample more extensive than the first one, it is only aimed at
academics. As a result, we cannot assure that the obtained findings can be generalised to professionals
of other disciplines or conventional users. Hence, more experimentation and analysis are required to
evaluate to what extent the findings presented in this work are of relevance for other cases.

It is necessary to consider the limitations of the current work. First, since the new type of language
block for providing app developers with a data stream according to a predefined period of time was
only incorporated for the standard BluetoothClient component and the BrainwaveSensor of VEDILS, it is
not currently possible to harness it for other built-in App Inventor sensors. In addition, the extension
component for using Bluetooth Low Energy (BLE) technology, which is not part of the App Inventor
main distribution, is not yet supported for our contribution. Second, the current implementation of the
components for visualising data do not allow developers to customise colours, lines widths, font sizes,
etc., which are format aspects usually required when designing charts.

Smart homes and buildings, smart cities, mobility and transportation, healthcare, agriculture
and industry are some of the main areas of IoT application [1]. The study conducted with students
illustrated the potential application of our approach to smart buildings, e.g., for monitoring room
temperature. Nevertheless, the contribution presented in the paper is expected to be useful to create
IoT applications for other areas. Thus, for example, non-expert programmers (researchers, patients and
healthcare professionals) will be able to develop apps for wellness and healthcare purposes without
struggling with the complexities of the common mobile programming languages, namely Java or Swift.
These kinds of apps are usually data-intensive and require to process users’ biometric data, which is
ingested from wearable devices, such as smart bands or chest straps, among others.

This research tried to investigate whether the components and extensions presented in the paper
contribute to the popularisation of IoT-based mobile app development. In this vein, EUD platforms
and, in particular, enriched block-based authoring tools as VEDILS, can simplify development tasks
of novice end-user programmers. Furthermore, according to the obtained results, the use of blocks

38

Sensors 2019, 19, 5467

based on the map-reduce paradigm from functional programming streamlines the development of
data processing functions in IoT consumer apps, although more experimentation is required. As future
work, we plan to support the BLE extension for App Inventor to improve the customising features of
the Chart and DataTable components.

Supplementary Materials: The software for authoring IoT apps with data processing and visualising capabilities
can be used through the VEDILS web site http://vedils.uca.es/. Besides, to guarantee the reproducibility of the
studies, all the resources developed are available online at http://www.mdpi.com/1424-8220/19/24/5467/s1.
This link provides a ZIP package containing: questionnaires and results of both studies, PDF presentations (in
Spanish) for the course with academics and the workshop with students and solutions for the different exercises
and tutorials.

Author Contributions: Conceptualization, I.R.-R.; methodology, I.R.-R. and J.M.D.; software, T.P. and I.R.-R.;
validation, J.M.M.; formal analysis, I.R.-R. and J.M.M.; investigation, I.R.-R., J.M.M., and J.M.R.C.; resources,
I.R.-R. and J.M.D.; data curation, I.R.-R. and J.M.M.; writing—original draft preparation, I.R.-R., J.M.M. and
J.M.R.C.; writing—review and editing, I.R.-R. and J.M.D.; visualization, I.R. and J.M.M.; supervision, I.R.-R.;
project administration, J.M.D.; funding acquisition, J.M.D.

Funding: This work was developed in the VISAIGLE project, funded by the Spanish National Research Agency
(AEI) with ERDF funds under grant ref. TIN2017-85797-R.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

Abbreviations

The following abbreviations are used in this manuscript:

BLE Bluetooth Low Energy
EEG electroencephalography
EHSE Earth & Health Sciences and Engineering
EUD end-user development
EUP end-user programming
FFT fast Fourier transform
GPS global positioning system
HMI Human Machine Interface
IoT Internet of Things
MIT Massachusetts Institute of Technology
PL pocket lab
SSH Social Sciences and Humanities
TAP trigger-action programming
VEDILS Visual Environment for Designing Interactive Learning Scenarios
YAIL Young Android Intermediate Language

References

1. Hassan, Q.F.; Madani, S.A. Internet of Things: Challenges, Advances, and Applications; CRC Press: Boca Raton,
FL, USA, Taylor & Francis Group, LLC: Abingdon, UK, 2017.

2. Zhong, N.; Ma, J.; Huang, R.; Liu, J.; Yao, Y.; Zhang, Y.; Chen, J. Research Challenges and Perspectives
on Wisdom Web of Things (W2T). In Wisdom Web of Things; Springer International Publishing: Cham,
Switzerland, 2016; pp. 3–26. [CrossRef]

3. Guo, B.; Zhang, D.; Wang, Z.; Yu, Z.; Zhou, X. Opportunistic IoT: Exploring the harmonious interaction
between human and the internet of things. J. Netw. Comput. Appl. 2013, 36, 1531–1539. [CrossRef]

4. Näätänen, R.; Tervaniemi, M.; Sussman, E.; Paavilainen, P.; Winkler, I. ‘Primitive intelligence’ in the auditory
cortex. Trends Neurosci. 2001, 24, 283–288. [CrossRef]

5. Ardito, C.; Desolda, G.; Lanzilotti, R.; Malizia, A.; Matera, M. Analysing trade-offs in frameworks for the
design of smart environments. Behav. Inf. Technol. 2019, 1–25. [CrossRef]

6. Stefik, A.; Siebert, S. An Empirical Investigation into Programming Language Syntax. ACM Trans.
Comput. Educ. 2013, 13. [CrossRef]

39

Sensors 2019, 19, 5467

7. Grover, S.; Pea, R.; Cooper, S. Designing for deeper learning in a blended computer science course for middle
school students. Comput. Sci. Educ. 2015, 25, 199–237. [CrossRef]

8. Weintrop, D.; Wilensky, U. Comparing Block-Based and Text-Based Programming in High School Computer
Science Classrooms. ACM Trans. Comput. Educ. 2017, 18. [CrossRef]

9. Weintrop, D.; Wilensky, U. Transitioning from introductory block-based and text-based environments to
professional programming languages in high school computer science classrooms. Comput. Educ. 2019, 142.
[CrossRef]

10. Paternò, F. End user development: Survey of an emerging field for empowering people. ISRN Softw. Eng.
2013, 2013, 532659. [CrossRef]

11. Franklin, D.; Hill, C.; Dwyer, H.; Hansen, A.; Iveland, A.; Harlow, D. Initialization in Scratch: Seeking
Knowledge Transfer. In Proceedings of the 47th ACM Technical Symposium on Computing Science
Education, Memphis, TN, USA, 2–5 March 2016; pp. 217–222. [CrossRef]

12. Bogaerts, S. Hands-On Exploration of Parallelism for Absolute Beginners with Scratch. In Proceedings of
the 2013 IEEE International Symposium on Parallel Distributed Processing, Workshops and Phd Forum,
Cambridge, MA, USA, 20–24 May 2013; pp. 1263–1268. [CrossRef]

13. Harvey, B.; Mönig, J. Lambda in blocks languages: Lessons learned. In Proceedings of the 2015 IEEE Blocks
and Beyond Workshop (Blocks and Beyond), Atlanta, GA, USA, 22 October 2015; pp. 35–38.

14. Kim, S.; Turbak, F. Adapting higher-order list operators for blocks programming. In Proceedings of the
2015 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC), Atlanta, GA, USA,
18–22 October 2015; pp. 213–217.

15. Guth, J.; Breitenbücher, U.; Falkenthal, M.; Leymann, F.; Reinfurt, L. Comparison of IoT platform
architectures: A field study based on a reference architecture. In Proceedings of the 2016 Cloudification of
the Internet of Things (CIoT), 2016, Paris, France, 23–25 November 2016; pp. 1–6.

16. Ngu, A.H.; Gutierrez, M.; Metsis, V.; Nepal, S.; Sheng, Q.Z. IoT middleware: A survey on issues and enabling
technologies. IEEE Internet Things J. 2016, 4, 1–20. [CrossRef]

17. Lee, I.; Lee, K. The Internet of Things (IoT): Applications, investments, and challenges for enterprises.
Bus. Horizons 2015, 58, 431–440. [CrossRef]

18. McEwen, A.; Cassimally, H. Designing the Internet of Things; John Wiley & Sons: Indianapolis, IN, USA, 2013.
19. Singh, K.J.; Kapoor, D.S. Create Your Own Internet of Things: A survey of IoT platforms. IEEE Consum.

Electron. Mag. 2017, 6, 57–68. [CrossRef]
20. Ali, F. Teaching the internet of things concepts. In Proceedings of the WESE’15: Workshop on Embedded

and Cyber-Physical Systems Education, Amsterdam, The Netherlands, 4–9 October 2015; p. 10.
21. Raikar, M.M.; Desai, P.; Vijayalakshmi, M.; Narayankar, P. Upsurge of IoT (Internet of Things) in engineering

education: A case study. In Proceedings of the 2018 International Conference on Advances in Computing,
Communications and Informatics (ICACCI), Bangalore, India, 19–22 September 2018; pp. 191–197.

22. Zhong, X.; Liang, Y. Raspberry Pi: An effective vehicle in teaching the internet of things in computer science
and engineering. Electronics 2016, 5, 56. [CrossRef]

23. He, N.; Bukralia, R.; Huang, H.W. Teaching wireless networking technologies in the internet-of-things using
ARM based microcontrollers. In Proceedings of the 2017 IEEE Frontiers in Education Conference (FIE),
Indianapolis, IN, USA, 18–21 October 2017; pp. 1–4.

24. Mäenpää, H.; Varjonen, S.; Hellas, A.; Tarkoma, S.; Männistö, T. Assessing IoT projects in university
education: A framework for problem-based learning. In Proceedings of the 39th International Conference on
Software Engineering: Software Engineering and Education Track, Buenos Aires, Argentina, 20–28 May 2017;
pp. 37–46.

25. Cvjetkovic, V. Pocket labs supported IoT teaching. Int. J. Eng. Pedagog. 2018, 8, 32–48. [CrossRef]
26. He, J.; Lo, D.C.T.; Xie, Y.; Lartigue, J. Integrating Internet of Things (IoT) into STEM undergraduate education:

Case study of a modern technology infused courseware for embedded system course. In Proceedings of the
2016 IEEE Frontiers in Education Conference (FIE), Erie, PA, USA, 12–15 October 2016; pp. 1–9.

27. Tanganelli, G.; Vallati, C.; Mingozzi, E. CoAPthon: Easy development of CoAP-based IoT applications with
Python. In Proceedings of the 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT), Milan, Italy,
14–16 December 2015; pp. 63–68.

28. Udoh, I.S.; Kotonya, G. Developing IoT applications: Challenges and frameworks. IET Cyber-Phys. Syst.
Theory Appl. 2018, 3, 65–72. [CrossRef]

40

Sensors 2019, 19, 5467

29. Pantelimon, S.G.; Rogojanu, T.; Braileanu, A.; Stanciu, V.D.; Dobre, C. Towards a Seamless Integration of IoT
Devices with IoT Platforms Using a Low-Code Approach. In Proceedings of the IEEE 5th World Forum on
Internet of Things, Limerick, Ireland, 15–18 April 2019; doi:10.1109/WF-IoT.2019.8767313. [CrossRef]

30. Chang, Y.H.; Ko, C.B. A Study on the Design of Low-Code and No Code Platform for Mobile Application
Development. Int. J. Adv. Smart Converg. 2017, 6, 50–55. [CrossRef]

31. Barricelli, B.R.; Cassano, F.; Fogli, D.; Piccinno, A. End-user development, end-user programming and
end-user software engineering: A systematic mapping study. J. Syst. Softw. 2019, 149, 101–137. [CrossRef]

32. Paternò, F.; Santoro, C. End-User Development for Personalizing Applications, Things, and Robots. Int. J.
Hum. Comput. Stud. 2019. [CrossRef]

33. Bau, D.; Gray, J.; Kelleher, C.; Sheldon, J.; Turbak, F. Learnable Programming: Blocks and Beyond.
Commun. ACM 2017, 60, 72–80. [CrossRef]

34. Lifelong Kindergarten Group. Scratch - Imagine, Program, Share, 2019. Available online: https://scratch.
mit.edu/ (accessed on 16 October 2019).

35. Armoni, M.; Meerbaum-Salant, O.; Ben-Ari, M. From scratch to “real” programming. ACM Trans. Comput.
Educ. (TOCE) 2015, 14, 25. [CrossRef]

36. Laval, J. End user live programming environment for robotics. Robot. Autom. Eng. J. 2018, 3. [CrossRef]
37. Massachusetts Institute of Technology. MIT App Inventor, 2019. Available online: https://appinventor.mit.

edu/ (accessed on 16 October 2019).
38. David, W.; Abelson, H.; Spertus, E.; Looney, L. App Inventor: Create Your Own Android Apps; O’Reilly Media,

Inc.: Sebastopol, CA, USA 2015.
39. Leonardi, N.; Manca, M.; Paternò, F.; Santoro, C. Trigger-Action Programming for Personalising Humanoid

Robot Behaviour. In Proceedings of the ACM CHI Conference on Human Factors in Computing Systems,
Scotland Uk, 4–9 May 2019; pp. 445:1–445:13.

40. Ur, B.; McManus, E.; Yong Ho, M.P.; Littman, M.L. Practical trigger-action programming in the smart home.
In Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems, Toronto, ON,
Canada, 26 April–1 May 2014; pp. 803–812.

41. Lifelong Kindergarten Group. Scratchx, 2019. Available online: https://scratchx.org/ (accessed on
16 October 2019).

42. Massachusetts Institute of Technology. MIT App Inventor + Internet of Things, 2019. Available online:
http://iot.appinventor.mit.edu/ (accessed on 16 October 2019).

43. Rizzo, A.; Burresi, G.; Montefoschi, F.; Caporali, M.; Giorgi, R. Making IoT with UDOO. Interact. Des.
Archit. J. 2016, 30, 95–112.

44. Lu, C.H.; Hwang, T.; Hwang, I.S. IoT Inventor: A web-enabled composer for building IoT-enabled
reconfigurable agentized services. In Proceedings of the 2016 IEEE International Conference on Consumer
Electronics-Taiwan (ICCE-TW), Nantou, Taiwan, 27–29 May 2016; pp. 1–2.

45. Mota, J.M.; Ruiz-Rube, I.; Dodero, J.M.; Arnedillo-Sánchez, I. Augmented reality mobile app development
for all. Comput. Electr. Eng. 2018, 65, 250–260. [CrossRef]

46. Corral, J.M.R.; Ruíz-Rube, I.; Balcells, A.C.; Mota-Macías, J.M.; Morgado-Estévez, A.; Dodero, J.M. A Study
on the Suitability of Visual Languages for Non-Expert Robot Programmers. IEEE Access 2019, 7, 17535–17550.
[CrossRef]

47. Rubin, J.; Chisnell, D. Handbook of Usability Testing: How to Plan, Design and Conduct Effective Tests; John Wiley
& Sons.: Indianapolis, IN, USA, 2008.

48. Krishnamurthi, S.; Fisler, K., Programming Paradigms and Beyond. In The Cambridge Handbook of Computing
Education Research; Cambridge University Press: Cambridge, UK, 2019.

49. O’Grady, M.J.; Muldoon, C.; Carr, D.; Wan, J.; Kroon, B.; O’Hare, G.M.P. Intelligent Sensing for Citizen
Science. Mob. Netw. Appl. 2016, 21, 375–385. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

41

sensors

Article

Fostering Environmental Awareness with Smart IoT
Planters in Campuses

Bernardo Tabuenca 1,*, Vicente García-Alcántara 1, Carlos Gilarranz-Casado 2 and

Samuel Barrado-Aguirre 3

1 Departamento de Sistemas Informáticos, Universidad Politécnica de Madrid, 28031 Madrid, Spain
2 Departamento de Ingeniería Agroforestal, Universidad Politécnica de Madrid, 28040 Madrid, Spain
3 Corporación Radiotelevisión Española, Dirección de Tecnología y Sistemas, 28223 Madrid, Spain
* Correspondence: bernardo.tabuenca@upm.es; Tel.: +34-91-06-73552

Received: 14 March 2020; Accepted: 11 April 2020; Published: 15 April 2020

Abstract: The decrease in the cost of sensors during the last years, and the arrival of the 5th generation
of mobile technology will greatly benefit Internet of Things (IoT) innovation. Accordingly, the
use of IoT in new agronomic practices might be a vital part for improving soil quality, optimising
water usage, or improving the environment. Nonetheless, the implementation of IoT systems to
foster environmental awareness in educational settings is still unexplored. This work addresses
the educational need to train students on how to design complex sensor-based IoT ecosystems.
Hence, a Project-Based-Learning approach is followed to explore multidisciplinary learning processes
implementing IoT systems that varied in the sensors, actuators, microcontrollers, plants, soils and
irrigation system they used. Three different types of planters were implemented, namely, hydroponic
system, vertical garden, and rectangular planters. This work presents three key contributions that
might help to improve teaching and learning processes. First, a holistic architecture describing how
IoT ecosystems can be implemented in higher education settings is presented. Second, the results
of an evaluation exploring teamwork performance in multidisciplinary groups is reported. Third,
alternative initiatives to promote environmental awareness in educational contexts (based on the
lessons learned) are suggested. The results of the evaluation show that multidisciplinary work
including students from different expertise areas is highly beneficial for learning as well as on the
perception of quality of the work obtained by the whole group. These conclusions rekindle the need
to encourage work in multidisciplinary teams to train engineers for Industry 4.0 in Higher Education.

Keywords: computer-based systems; environmental awareness; Industry 4.0; Internet of Things;
irrigation systems; planter; project-based-learning; smart learning environments; teamwork

1. Introduction

The growth of wireless networks and the proliferation of mobile devices in all contexts of human
social life are facilitating the implementation of initiatives in which objects and people are connected.
More recently, 5G networks have increased in response speed, transfer speed, data bandwidth, and
wireless coverage throughout the whole populated territory on earth [1,2]. In this context, it is key to
train engineers with the capabilities to develop systems that combine people, networks, and real-world
objects. The Internet of Things (IoT) is widely considered the next step towards a digital society
where objects and people are interconnected and interact through communication networks in Smart
Cities [3,4].

The decrease in the price of electronic components (i.e., microcontrollers, sensors, and actuators)
and their availability to buy them in online markets from home has facilitated the integration of
education on microelectronics in schools and universities. Manufacturers of microcontrollers, as an
interested party, are putting countless “Starter kits” for sale with low-cost cases to get started in

Sensors 2020, 20, 2227; doi:10.3390/s20082227 www.mdpi.com/journal/sensors43

Sensors 2020, 20, 2227

the world of IoT (e.g., Grove Starter Kit for IoT, Adafruit Microsoft Azure IoT starter kit, Arduino
starter kit, SparkFun IoT starter kit, CanaKit Raspberry Pi starter kit, Vilros Raspberry Pi 4 complete).
Furthermore, social networks are facilitating the sharing of the so-called “know-how” through videos
and descriptive documents that help to assemble the components in only some minutes. Nonetheless,
the industry not only requires engineers to know how to assemble Lego bricks correctly, but engineers
must also understand why bricks are assembled this way. It is essential that universities instil ingenuity
in students so that future engineers know how to apply the knowledge in the most effective, efficient
and sustainable way towards Industry 4.0.

Industry 4.0 is a concept originated to describe a vision of manufacturing with all its processes
interconnected through the IoT. Industry 4.0 (or 4th industrial revolution) consists of digitizing
industrial processes, automating tasks by training machines with artificial intelligence, connectivity,
and optimizing resources. The combination of Internet technologies and future-oriented technologies
in the field of smart objects proves to be a new fundamental paradigm shift in industrial production [5].
The optimization of resources in Industry 4.0 is related to the optimization of production not only at an
economic level saving raw materials and energy resources, but also at an ecological level promoting
the principles of sustainability to care for the planet. The United Nations 2030 Agenda for Sustainable
Development with its 17 Sustainable Development Goals presents a bold and comprehensive framework
for development cooperation in the coming years [6]. In this sense, it is important to educate students
about the need to implement technological solutions that meet the objectives of the 2030 agenda
to ensure that the engineers of the future have more capacity and ecological awareness than their
predecessors of the three previous industrial revolutions.

Implementing IoT systems that are economically and ecologically efficient requires a deep
knowledge on different disciplines. Creating these systems requires expertise to interconnect the
components, but also capability to implement systems that are coherent with a sustainable environment.
Nowadays, engineering career Curricula are designed to train students in a specific discipline e.g.,
Computer Engineering, Agricultural Engineering, Forestry Engineering, Industrial Engineering, Civil
Engineering. The duration of the Curricula does not usually allow training more than one discipline,
and transversal competences like sustainability or reflective practice on environmental issues are not
always explored enough.

In this work, we carry out a study in which future engineers from different disciplines (i.e.,
Computer Engineering, Agricultural Engineering) work together to implement Smart IoT planters.
These Smart IoT planters aim to promote environmental awareness on university campuses. The
contribution of this work is threefold: Firstly, a holistic architecture describing the Smart IoT planters
implemented throughout a semester is presented. Secondly, the results of an evaluation exploring
teamwork performance in multidisciplinary teams are stated. Third, alternative initiatives to promote
environmental awareness on campuses from students’ perspective are presented.

This article is distributed as follows: in Section 1.1 previous work on Smart IoT planters is explored
and the benefits of plants in learning spaces are specified. In Section 1.2 the scientific literature in the
context of teamwork in educational settings is examined. In Section 2, the materials and methodology
applied in this study are described. In Section 3 the results of the study are presented. Finally, in
Section 4 the results are analysed and discussed.

1.1. Smart IoT Planters in Educational Contexts

Indoor plants have countless benefits to human health and well-being [7–11]. The classroom
environment can play an important role in students’ learning and academic performance [8]. Han [9]
performed a study in two different high school classes of which one served as the experimental group
and the other as control. Six plants were placed at the back of the classroom. The experimental
group had immediately and significantly stronger feelings of preference, comfort, and friendliness
as compared to the control group. Also, the experimental group had significantly fewer hours of
sick leave and punishment records due to misbehaviour than the control group. Similarly, Fjeld [10]

44

Sensors 2020, 20, 2227

performed a study measuring health and discomfort symptoms. The results concluded 21% lower
mean score for health symptoms in classrooms with plants, and a more positive consideration of the
classrooms with plants (more beautiful, brighter, and comfortable). Likewise, Khan et al. [11] explored
self-reported observations on indoor air quality, aesthetics, and performance. The results show that
large majorities reported that the plants improved air quality, increased pleasantness, and helped to
improve their performance. This study investigates alternative implementations to install Smart IoT
planters as an approach to promote environmental awareness using plants in learning spaces.

Placing IoT systems in plants is not new [12–19]. The availability of sensors and microcontrollers
in the online market has facilitated the implementation of systems for monitoring plants, automate
irrigation, provide artificial light, or disease detection in plants. Gomez et al. [12] designed a system
for monitoring soil moisture, humidity, and ultraviolet radiation in protected crops. Srbinovska [13]
presented a wireless sensor network architecture for vegetable greenhouse in order to achieve cultivation
and lower management costs monitoring temperature, humidity, and illumination. Similarly, in the
context of greenhouses, Lambebo and Haghani [14] designed a wireless sensor network using open
source and inexpensive hardware to measure the concentration level of several greenhouse gases.
These planters vary on which sensors, microcontrollers, data persistence storage, and actuators are
used to grow plants. Recent implementations in higher education contexts are putting special emphasis
on the technological challenges faced and on the solutions adopted [20,21], or the impact on students’
satisfaction and motivation [22]. However, none of these systems used real plants with IoT systems
to foster environmental awareness in educational contexts. Hence, research questions 1 and 2 are
formulated as follows:

RQ1. What kind of Smart IoT planters can be implemented to foster environmental awareness in
educational contexts?

RQ2. What alternative initiatives can be proposed to promote environmental awareness in
the campus?

1.2. Teamwork Towards Multidisciplinary Implementations

Project-Based-Learning (PBL) is a framework for teaching and learning organized activities to
create a product that is becoming more popular in the last years [22–25]. Within this framework,
students working in groups strive for solutions to complex problems by asking and clarifying questions,
debating ideas, making predictions collecting and analysing data, communicating their findings to
others and creating artefacts [26]. PBL is based on re-engineered processes that involve people from
multiple disciplines to improve and broaden the competence of engineering students. The aim of
PBL is to: (a) understand the role of theoretical and real-world discipline-specific knowledge in a
multi-disciplinary, collaborative, practical project-centred environment; (b) recognize the relationship
of the engineering enterprise to the social/economic/political context of engineering practice and
the key role of this context in engineering decisions, and; (c) learn how to participate in and lead
multidisciplinary teams to design and build environmentally conscious and high quality facilities faster
and more economically [27]. The review of research on PBL concludes that there is a need for more
research documenting the effects and effectiveness using this model [28]. In fact, the literature shows
several representations to comprehend the effectiveness of learning processes in working teams [29–34],
most of which have been produced around the Input-Process-Output (I-P-O) model [32]. Inputs set the
conditions under which group interaction processes take place [35]. Inputs are variables that can affect
teamwork at various levels (e.g., individual, group and environment) both internally (e.g., members’
skills, attitudes, personality, group structure, group size) and externally (e.g., level of environmental
stress, reward structure). Group interaction processes take place when team members interact [35] and
indicate how a group is performing [30]. Finally, outcomes are criteria to assess the effectiveness of team
actions. A recent study [36] draws on the model to conclude that cooperativeness and collaborative
behaviour had a positive influence on team cohesiveness, while workload and task complexity had a
negative influence on it. Additionally, the study found that team cohesiveness was positively related

45

Sensors 2020, 20, 2227

to perceived learning, satisfaction with teamwork, and expected quality. Likewise, both perceived
learning and expected quality predicted satisfaction with teamwork.

Therefore, we investigate the effects and effectiveness of PBL varying the group composition in
the context of Higher Education studies [28] considering the instruments and conclusions suggested
in [36]. Logically, research questions 3 and 4 are formulated as follows:

RQ3. What are the effects of multidisciplinary teamwork in learning performance?
RQ4. Which are the channels used to communicate in teamwork.

2. Materials and Methods

This study was carried out in the context of the Computer Based Systems module, which runs in
the first semester period of the fourth year of the Degree in Computer Engineering. The module is
mostly practical, and it is aimed at implementing technological solutions based on IoT for Smart Cities.
This year it was decided to suggest the design of Smart IoT planters to automate the irrigation system
at the university campus. Implementing an irrigation system requires very specific knowledge and
expertise that most computer students do not have. For this reason, teachers decided that students of
Computer Based Systems (Computer Engineering (CE)) might join students of Irrigation and Drainage
Technology Systems (Agricultural Engineering (AE)) to work collaboratively to implement solutions
considering multidisciplinary perspectives. Both CE and AD modules run in parallel along the first
semester of the year.

As CE and AE students might broadly differ in their interests towards implementing the planter,
a transversal approach was sought. Hence, teachers highlighted that the main objective of the Smart
IoT planter should be to raise awareness among students and university employees about the need to
cover Sustainable Development Goals (SDGs) [6] specified in modules’ syllabuses: Goal 7. Ensure
access to affordable, reliable, sustainable and modern energy for all; Goal 11. Make cities and human
settlements inclusive, safe, resilient, and sustainable; Goal 12. Ensure sustainable consumption and
production patterns; and Goal 13. Take urgent action to combat climate change and its impacts. The
modules followed a PBL approach.

2.1. Participants

For this study, all students enrolled (n = 40) in the Computer Based Systems module (CE), and all
students enrolled (n = 12) in the Irrigation and Drainage Technology Systems (AE) were invited to
participate in the study. Finally, a total of 47 students accepted the consent form and completed the
pre-questionnaire (88.71% male, 14.29% female), thereof 35 were CE students and 12 were AE students.
The mean age was 24.23 and the standard deviation was 4.08. All sessions were face-to-face, and the
attendance was mandatory but not registered.

2.2. Materials

During the first month (September 2019), students were able to plan their project identifying
what components they would need, how they would be assembled, and for what purpose. On the
one hand, CE students took the lead within their groups by analysing the most suitable sensors, and
actuators. The selection and purchase of components was restricted to the stocks in a well-known
website specialized in electronic components. On the other hand, AE students took the lead within
their groups to decide on which components were required to assemble the irrigation system, the type
of soil, and the type of plant. Before making the full purchase, the groups presented a preliminary
draft specifying which components were to be used and how they were to be assembled. Professors
from both disciplines (CE and AE) validated the proposals, and suggested changes to guarantee the
operation of their future IoT projects.

All students had institutional tools to work collaboratively online (i.e., Microsoft Sharepoint,
Microsoft Teams, Skype, and email accounts). All students were assisted on-demand by teachers.

46

Sensors 2020, 20, 2227

2.3. Design of the Case Study

This collaboration between faculties from different disciplines was developed with the aim to
promote mixed areas of knowledge (i.e., mechatronics) within the university. This study was carried out
and presented to students as an initiative in which they should design IoT systems that are compliant
with the SDGs [6].

The composition of the groups varied on the expertise of the students, and the expertise of the
teachers. Hence, there were 3 different types of groups:

(1) Type A groups (3 x groups) comprised 4 CE students. Type A groups had support from CE
teachers. These groups comprised only members from the CE discipline. These were the groups
with the lowest degree of multidisciplinarity.

(2) Type B groups (3 x groups) comprised 4 CE students, and 4 AE students. Type B groups had
support from both the CE and the AE teachers. AE students were only assigned to type B groups.
These were groups with the highest degree of multidisciplinarity.

(3) Type C groups (3 x groups) comprised only CE students. Type C groups had support from both
CE and AE teachers. These were the groups with a medium degree of multidisciplinarity.

Regarding the group formation, teachers presented the 3 types of groups that students might join
to work along the semester. Students were assigned to groups as soon as they decided the option
that was more convenient for them. Finally, there were 3 groups for each group type. Each group
voluntarily chose a leader who was in charge of organizing the communication, and taking care of the
materials. All groups collaborated during the semester using the channels they found handier.

CE and AE students were allocated on two different campuses in the city (i.e., Campus Sur, and
Ciudad Universitaria). Hence, group leaders organized sporadic and spontaneous meetings to make
progress within their projects. Additionally, students were encouraged to use the channels provided
by the university to arrange synchronous and/or asynchronous online meetings.

2.4. Meassure Instruments

This study followed the constructs suggested by Gil et al. [36] to measure team work. Reasonably,
seven-point Likert scales were used to measure the 8 constructs: (1) Cooperativeness was measured
using items 4 from [37]; (2) Collaborative behaviour was measured using 5 items from [38]; (3) Task
complexity and (4) Workload were measured using 3 and 4 items respectively from [39]; (5) Team
cohesiveness was measured using 6 items from [37,40,41]; (6) Perceived learning was measured using
items from [42]; (7) Expected quality was measured using 3 items from [43]; (8) Satisfaction with
teamwork was assessed following [41,44]. The forms were completed using an online questionnaire at
the end of the course.

Teachers evaluated the work of CE students in a 0 to 10 scale at the end of the course. Students
had to prepare a practical demo of the planter, write a technical document describing hardware and
software designs, specify how they had covered the SDGs in their implementation, suggest further
initiatives to foster environmental awareness in the campus, and openly share the code in a repository.
In contrast, AE students were evaluated considering elements of assessment that happened before the
start of the study. Hence, AE students’ grades were excluded from the evaluation to avoid bias.

2.5. Procedure

This experiment took place between September 2019 and January 2020 in 32 lab sessions of two
hours duration (2 sessions per week). To attract the motivation of the students, the origin of urban
gardens was contextualized in World War II and linked to its current use in most developed countries
where it is becoming an alternative to the consumption of transgenic foods and pesticides. Looking
for a closer standpoint, this initiative was motivated in the context of their own campus to make it
more sustainable.

47

Sensors 2020, 20, 2227

The first two weeks of the course comprised the presentation of the module, the introduction
to theoretical concepts, and the group formation. Starting the fifth school-week, each group had to
deliver a preliminary draft (pre-design of the IoT system) including an outline that specified which
components were going to be needed, and how they were going to be interconnected to achieve the
specific objectives of their final project. The teachers used the students’ proposals to filter, to agree, and
to purchase the components based on their expertise and the existing budget. Starting the sixth week,
students could start working with the components. At the end of week 16th, groups defended their
projects making a demo, writing technical documentation, and answering the questions formulated by
the teachers during the evaluation.

2.6. Data Analysis

Questionnaires data and scores were imported from the survey-platform into MS Excel format
and then analysed using R Studio (v1.2.1335).

The reliability coefficient (Cronbach’s alpha) was calculated to validate the internal consistency of
the sample (see Table 1). Nunnally has suggested that score reliability of 0.70 or better is acceptable [45].

Table 1. Overall Means (M), Standard Deviations (SD), and Reliability Coefficient (Cronbach’s Alpha).

Scale (7-Point Likert) M(SD) Cronbach’s α Sample Item

Perceived learning 4.35(1.68) 0.96 I am learning to identify the central issues of the subject
Expected quality 5.75(1.30) 0.94 I think the work of my team deserves a high mark
Team cohesiveness 5.67(1.23) 0.89 Every member in the team fulfils their part
Workload 2.78(1.38) 0.89 Teamwork requires a lot of my time
Satisfaction 5.97(1.08) 0.77 I enjoy working with my team
Collaborative behaviour 5.70(0.94) 0.71 Teamwork is stimulating for me
Cooperativeness 5.06(0.78) 0.52 * I like to work with other people
Task complexity 4.27(1.25) 0.42 * I have undertaken similar tasks in other subjects

*: Internal consistency (α ≥ 70).

A Shapiro–Wilk test was conducted to confirm the normal distribution assumption of the sample
towards performing an analysis of variance (ANOVA). The ANOVA test was conducted to confirm
significant differences among the means obtained.

Finally, a Pearson’s correlation analysis was run to determine the relationship between the means
obtained (Table 4). Pearson indicates the strength of the linear relationship between two variables
for which the values range between −1 < 0 < 1. The values closer to 1 (−1) depict a stronger positive
(negative) correlation, meaning that the second variable tends to increase (decrease) when the values
of the first value are increased and vice versa. The closer the values are to 0, the weaker the correlation
is. A p-value less than 0.01 is taken as indicator for significant correlations. We can verbally describe
the strength of the correlation using the guide that Evans [42] suggested for the absolute value of r
(Strength: 0.00–0.19 “very weak”; 0.20–0.39 “weak”; 0.40–0.59 “moderate”; 0.60–0.79 “strong”; 0.80–1.0
“very strong”).

3. Results

The results presented in Section 3.1 address RQ1, Section 3.2 addresses RQ3 and RQ4, whereas
RQ2 is addressed in Section 3.3.

3.1. IoT Systems to Foster Environmental Awareness in the Campus

This study investigates what kind of Smart IoT planters can be implemented to foster environmental
awareness in educational contexts (RQ1). Finally, the groups implemented 3 different planter types:

1. Vertical garden: A wooden pallet placed vertically on a wall with 6 plastic bottles attached to
it. The bottles are placed diagonally from the top to the bottom with a change of direction.

48

Sensors 2020, 20, 2227

When watering the bottle on top using a dripper, the water runs from one bottle to the next one
immediately below. The circuit concludes in a small tank for the remaining water. See Figure 1a.

2. Hydroponic system: A closed circular circuit created with pipes. The plants are placed in the holes
created in the upper part of the pipe so that the base of the plant is in contact with water and
nutrients. A pump is used to circulate water from a tank to the rest of the circuit. See Figure 1b.

3. Rectangular planters: 6 plastic planters with 50 × 38 × 30 dimensions were installed. A slit was
opened at the bottom of the side of the planters to release the remaining water. Figure 1c illustrates
how some of the electronic components are embedded.

(a) Vertical garden (b) Hydroponic system (c) Rectangular planters (2×)

Figure 1. Internet of Things (IoT) planters installed in the campus.

Each working group justified the selected plant considering where it was going to be installed. The
groups finally decided on cyca palm, organic grass, lolium perennial, kale, artichoke, and peppermint.
Ornamental flowers were planted in the vertical garden, and lettuce was planted in the hydroponic
system. The composition of the soil (i.e., substratum and soil) was adapted to the needs of each type
of plant.

The planters were equipped with different IoT systems. Sensors, actuators, IoT cloud platform,
and irrigation systems included in the IoT systems are illustrated in Figure 2. In the following sections,
a holistic approach is represented to describe all the components included by the different planters.

Figure 2. Holistic architecture of the components included in the IoT planters.

49

Sensors 2020, 20, 2227

3.1.1. Sensors

Students were able to investigate which variables they needed to manage and therefore what
sensors they wanted to install in their planter. The groups selected both analog and digital sensors.
Analog sensors return voltage as an output whereas digital sensors return digital values. These were
the sensors installed in the planters (See Figure 2):

• Water sensor: an analog sensor which returns 0 value if no water is detected, and a higher value
when water is detected. The vertical garden was designed placing the water sensor within a small
tank attached to the bottleneck of the last bottle. This tank contains the excess water. Similarly, all
rectangular planters have a slit in the bottom back side where excess water can escape to a plate
when the pot overflows. The water sensor was placed on the plate so that whenever there was a
drop on its grid, the irrigation system was automatically stopped.

• Weight sensor: an analog sensor that varies the output voltage depending on the mass on it. This
sensor is placed at the base of the planter of rectangular planters to keep track of the weight. The
groups installed this sensor with two different purposes: (1) Identify when to stop the irrigation.
Knowing how much weight the pot has before starting to water, and how much weight the pot has
when the water begins to overflow, the students were able to design a system to stop watering.; (2)
Manage the evolution of the plant mass of the planter. The plant grows inside and outside the pot
as time passes. This sensor allows you to know precisely what plant mass the pot has. This data is
relevant to determine the amount of nutrients needed, and to determine the moment when to
relocate the plant to a larger pot.

• Temperature probe: an analog sensor using a resistance that varies the output voltage between 0
and 1000 depending on the inner temperature. The probe is installed inside the land to explore
the temperature of the plant at different depths.

• Soil moisture sensor: an analog sensor that measures the volumetric water content in soil. Measuring
soil moisture is important to manage the irrigation system more efficiently. This sensor measures
the humidity of the soil of the plant positioning the two legs inside the ground. The students
proposed the use of this sensor in 2 different ways: (1) To control humidity horizontally. Students
placed the sensor on the surface of the land to determine the humidity of the soil at different
distances from the drip system (or plant stem); (2) to control humidity vertically. Students placed
the sensor making a slit in the side of the pot at different depths to measure the evolution of the
wet bulb.

• Light Dependent Resistor (LDR): an analog sensor whose resistance varies depending on the amount
of light falling on its surface. These resistors are often used in circuits where it is required to sense
the presence of light. The groups used this sensor to artificially adapt the light of the plant to
make the photosynthesis, when natural light was not appropriate.

• Environmental temperature: a digital sensor that returns two decimal values reporting Celsius
degrees. The temperature in campus corridors usually fluctuates depending on the time of
day, the angle of the light, if windows are open or closed, number of students around, or if
the heating system is on or off. Likewise, there are plants that are more sensitive than others
to temperature fluctuations. The ambient temperature sensor allowed to monitor how the
temperature varied throughout the day and to provide suitable feedback depending on the type
of plant being cultivated.

• Environmental humidity: a digital sensor that returns two decimal values reporting percentage of
humidity. Moisture is important so that photosynthesis is possible. Likewise, plants should not
lose too much water from their leaves. The humidity sensor allows to monitor how the humidity
varied and to adapt the feedback to the user based on the need to humidify the plant. Some
students suggested installing an air humidifier as actuator in further implementations.

• Environmental light: a digital sensor, which returns four decimal values between 0 and 2400
reporting the existing light intensity measured in lux (unit of measure for the amount of light

50

Sensors 2020, 20, 2227

received by the sensor). Similar to the LDR, it is used to provide additional artificial light if the
natural one is not enough.

• CO2-Air quality: a digital sensor that returns four decimal values between 450 and 2000 ppm (parts
per million). Air quality is measured on the basis of the CO2 ppm number and volatile organic
compounds coexisting in the air. The students implemented this sensor to alert users when the
corridor is saturated with CO2 and it is necessary to open the windows.

3.1.2. Actuators

• Relay. The relay is a switch controlled by an electrical circuit by means of a coil and an electromagnet
to open or close the electro valve.

• Solenoid valve (electro valve). This valve controls the passage of the irrigation water through the
pipe. The valve is moved by a solenoid coil, and has only two positions: open or closed.

• High intensity colour LED. The students used sets of LEDs for two different functionalities: (1)
produce artificial light to facilitate photosynthesis of the plant; (2) provide feedback to the user
in real time on how the irrigation system is working. e.g., Group #1 implemented the following
policy: LED lights blue when the plant is watering; the LED turns red when the AQ sensor reported
over 1000 ppm of CO2; the LED turns green when the sensors of the plant return optimal values.

• Ambient displays and feedback tools. Students used different interfaces to show the values returned
by the sensors:

(a) Ambient display: The PRISMA is an environmental display to support learning
scenarios [46]. See Figure 3a. The PRISMA can display information with its 24 LED
ring, 8 × 8 LED matrix, and a liquid crystal display. This display was made available
to students so they could configure it based on their interaction needs. E.g. Group #3
configured the PRISMA to provide a range of colours between blue and yellow derived
from the humidity returned by the sensor.

(b) Interactive touch screen display. This interactive display was installed to present real-time
information from all planters making sensors data visible with visual metaphors. The
main screen includes a menu where the user can select which planter to explore in detail.
See Figure 2 (left).

(c) Mobile messaging system. Group #5 configured the IoT system to send alerts by means
of Telegram instant messaging app, when specific events occur. Figure 3b shows some
examples of the configured alerts: “The plant has not enough light”, “Congratulations!
The plant is growing under the best conditions”, “Security alert! There is no Internet
connectivity. Check the planter”. The system also notifies when the irrigation has started
and finished.

3.1.3. Computer and Microcontroller

The board (or microcontroller) is the main component connecting the rest of the subsystems. Its
role is to receive the captured data, processing the data, and send orders to actuators to maintain the
plant in the best conditions. Likewise, the processor sends data to the IoT platform where it is stored
and monitored according to consistent rules. The system is continuously active to periodically read,
validate, and write the value of the sensors. The IoT systems implemented included both Up2 board
(computer) and/or ESP32 (microcontroller).

• UP2 board. The UP Squared board is an x86 maker board based on the Intel. The UP boards are
used in IoT applications, industrial automation, or digital signage. This board is equipped with
an Intel Celeron N3550 and Intel Pentium N4200 System on Chip (SoC), 40 pins, 8 GB RAM,
Ethernet, HDMI, and USB connectors. This case study was carried out along the semester of the

51

Sensors 2020, 20, 2227

Computer Based Systems module. Hence, students were urged to implement their IoT systems
using this board.

• ESP32 microcontroller. ESP32 is a series of low-cost, low-power SoC microcontrollers with integrated
Wi-Fi and dual-mode Bluetooth. The ESP32 employs a Tensilica Xtensa LX6 microprocessor.
ESP32 includes built-in antenna switches, power amplifier, low-noise receives amplifier, filters,
and power-management modules. In this case study, the most advantageous groups were able to
adapt the processing capacity of the system and replace the board with a microcontroller.

(a) (b) (c)

Figure 3. Feedback services configured: (a) Prisma, a visual feedback display; (b) Telegram messenger
to receive alerts; (c) IoT cloud platform. Thingsboard.io desktop dashboard.

3.1.4. IoT Cloud Platform

In the initial phase, students should agree on which IoT cloud platform would be used to persist
and monitor data from planters. A brainstorming session was organized to explore and test existing
IoT platforms. The following features were considered to take the decision: REST API, authentication
type, protocols for data collection (i.e., MQTT, HTTP, CoAP), and analytics provided. The following
IoT platforms were considered: Azure IoT, DeviceHive, Kaa IoT Platform, Mainflux, SiteWhere,
Thingsboard.io, Thinger.io ThingSpeak, SSo2, and Zetta. Finally, Thingsboard.io received more votes
from the students at the end of the brainstorming session.

All groups created a profile in Thingsboard.io to adapt the IoT platform to the specific requirements
of each planter. These were the features used by the groups:

• Application Programming Interface (API). All groups used the Rest API to remotely store the data in
the cloud via HTTP or MQTT protocols.

• Rule engine. Students were able to configure specific rules to validate the data and consistently
perform specific actions. e.g., Group #5 configured the platform to broadcast mobile messages
alerting the user via Telegram when precise events occurred.

• Data persistence. Trial profiles created in the IoT platform had restrictions regarding the duration
of the data persistence in the cloud. Hence, some groups were able to configure the system to
backup the data in a local database to keep long-term data.

• Visualization dashboard. The IoT dashboard is a key HMI (Human-Machine Interface) component
to organize and present digital information from the physical world into a simply understood
display on a computer or mobile. Hence, students were able to interpret the information stored in
the IoT platform using different interfaces depending on the sensor they were able to configure
(See Figure 3c).

52

Sensors 2020, 20, 2227

3.1.5. Irrigation System

Agricultural Engineering students and teachers were responsible for designing and installing
the automatic irrigation system. The installation involved the setup of planters, motorized valves,
droppers, water pipes, water counters, water filters, and pressure switches. This subsystem is formed
by a relay that controls the opening and closing of a solenoid valve, which allows or not the passage of
water. The relay receives a direct order from the computer/microcontroller configured by CE students.
CE and AE teachers provided on-demand support but also regularly reviewed the progress performed
by each group.

3.2. Mutlidisciplinary Teamwork on IoT

This study is aimed at exploring the effects of multidisciplinary teamwork in learning performance
(RQ3). Hence, we explored the extent to which teamwork subscales can vary based on the
multidisciplinarity in the composition of the work groups. The scores obtained demonstrated
adequate internal consistency for 6 out of 8 scales (see Table 1). Values for Cronbach’s alpha ranged
from 0.71 to 0.96 revealing sufficient score reliability for “perceived learning”, “expected quality”,
“team cohesiveness”, “workload”, “satisfaction” and “collaborative behavior”. Nevertheless, values for
Cronbach’s alpha ranged from 0.42 to 0.52 revealing insufficient score reliability for “cooperativeness”
and “task complexity”, and they were consistently discarded for the rest of the analysis.

Means and standard deviation were calculated taking into account the composition of the groups.
The results illustrated in Table 2 show that by taking together all the values of the teamwork scale in a
range of 1 to 7, group B obtained an average rating slightly higher than group C. On the contrary, group
A obtained a rating of 0.59 points lower than group B. Looking at the subscales individually, the results
concluded that group B obtained the highest scores for “collaborative behaviour”, “satisfaction”, “team
cohesiveness”, and “perceived learning”. On the other hand, group C obtained the highest scores in
“expected quality” and “perceived learning”. On the contrary, group A obtained the lowest scores in
all subscales.

Table 2. Teamwork means and standard deviations by group composition.

Scales/Subscales Group A Group B Group C

M(SD)
N = 15

M(SD)
N = 12

M(SD)
N = 12

Overall teamwork 4.67(0.88) 5.26(1.01) 5.24(0.61)
Collaborative behaviour 5.69(0.91) 5.80(1.10) 5.58(0.85)

Satisfaction 5.55(1.32) 6.47(0.89) 5.95(0.76)
Team cohesiveness 5.28(1.33) 5.93(1.28) 5.84(1.04)
Expected quality 5.12(1.32) 5.97(1.43) 6.27(0.75)

Perceived learning 4.00(1.63) 4.65(1.79) 4.47(1.71)
Workload 2.38(0.69) 2.72(1.63) 3.31(1.63)

Grades 7.49(1.63) 9.09(0.69) 8.65(0.63)

With regard to the marks obtained by the students in the final evaluation on a scale of 0 to 10 (10
being the best score), the results showed that group B obtained the upper average grade, followed by
group C. The group A scored 1.60 points lower than group B, and 1.16 points lower than group C.

The results obtained in the Shapiro–Wilk test (p-value= 0.00057) confirmed the normal distribution
of the overall teamwork data sample. Exploring the teamwork subscales independently, p-values lower
than 0.05 and the observations of the Q-Q plots confirm that “Collaborative behaviour”, “Satisfaction”,
“Team cohesiveness”, “Expected quality”, and “Workload” samples are normally distributed. However,
the p-values obtained in the “perceived learning” sample deviate from normality. Hence, “perceived
learning” was consistently discarded in the ANOVA test.

53

Sensors 2020, 20, 2227

An ANOVA test was performed to identify significant differences between the mean values
(Table 3). On the one hand, the test resulted in significant values for the grades obtained in the
evaluation (See grades in Figure 4a). On the other hand, the test resulted in Pr(>F) = 0.17 (which is
slightly higher to the coefficient of significance 0.1) for the overall teamwork scales, and consequently
non-significant values for the overall teamwork scales. Exploring the values obtained in the subscales,
the ANOVA test resulted in significant values for “expected quality” (Figure 4b).

Table 3. Analysis of Variance ANOVA. Significance Pr(>F) > 0.1.

Scales
Sum of
Squares

df
Mean
Square

F Pr(>F)

Teamwork 2.27 2 1.35 1.84 0.17
Collaborative

behaviour 0.26 2 0.13 0.14 0.86

Workload 5.25 2 2.62 1.41 0.25
Team cohesiveness 3.11 2 1.55 1.02 0.37

Expected quality 8.56 2 4.28 2.81 0.07
Satisfaction 5.04 2 2.52 2.31 0.11

Grades 17.14 2 8.57 6.73 0.003 **

Pr(<F) Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.

(a) Grades (b) Expected quality

Figure 4. Boxplots contrasting group composition.

This study aimed at exploring the significance of the relationship between the means obtained in
teamwork subscales and the grades. Additionally, we investigated the relationships within teamwork
subscales (Table 4). We anticipated that learning performance (grades) would be positively correlated
with teamwork subscales. Contrary to our expectations, though, the results of the analysis do not depict
a significant correlation between them. Additionally, we aimed at exploring potential correlations
within teamwork subscales. The results from the correlation analysis show that there is a significant
very strong positive correlation between “cohesiveness” and “satisfaction”. Similarly, “cohesiveness”
has a strong positive correlation with “expected quality”, “perceived learning”, and “collaboration”.
Likewise, “expected quality” has a strong positive correlation with “satisfaction”.

Frequently Used Channels to Communicate

In this case study, we aimed at exploring the most frequently used channels to communicate while
working in groups (RQ4). Students were assigned an optional task in which they could report once a
week (using an online form) what channels they had used to communicate among team colleagues.

54

Sensors 2020, 20, 2227

There were 272 reports from 47 different students along the semester (Table 5). There was a mean of
5.78 reports by student. Whatsapp, Telegram and Teams were the most frequently used channels.

Table 4. Pearson’s correlation analysis (* Correlation significance < 0.01).

r Grades Collaborat. Workload Cohesive. Learning Quality Satisfact.

Grades 1
Collaboration −0.03 1

Workload 0.09 −0.12 1
Cohesiveness 0.09 0.61 * 0.12 1

Learning 0.09 0.59 * −0.01 0.62 * 1
Quality 0.34 0.40 0.12 0.66 * 0.35 1

Satisfaction 0.31 0.56 * −0.02 0.81 * 0.47 0.67 * 1

Table 5. Channels used to communicate among team colleagues. Frequency of usage.

Never
1

Rarely
2

Occasionally
3

Frequently
4

Very Frequently
5

M(SD)

%(n) %(n) %(n) %(n) %(n)
WhatsApp 14.34 (39) 5.51 (15) 12.50(34) 22.43(61) 45.22(123) 3.79(1.43)

Telegram 47.06 (128) 7.35 (20) 5.15(14) 5.15(14) 35.29(96) 2.74(1.83)
eMail 53.68 (146) 20.59 (56) 15.81(43) 6.62(18) 3.31(9) 1.85(1.11)
Teams 74.63 (203) 13.97 (38) 9.19(25) 2.21(6) 0(0) 1.39(0.75)
Skype 87.13 (237) 9.56 (26) 2.21(6) 0.74(2) 0.37(1) 1.18(0.53)

Facebook 99.26 (270) 0.74 (2) 0(0) 0(0) 0(0) 1.01(0.08)
Instagram 99.26 (270) 0.74 (2) 0(0) 0(0) 0(0) 1.01(0.08)

3.3. Educational Initiatives to Promote Environmental Awareness in the Campus

Based on the lessons learned along the semester in which the IoT planters were developed,
students were encouraged to suggest alternative educational initiatives to promote environmental
awareness in the campus. These were the most relevant actions:

There were different students suggesting interactive systems to improve IoT planters. Student
#612 suggested developing a mobile app inspired on the Tamagotchi metaphor to take care of the
IoT planters. The Tamagotchi would simulate the real IoT planter where participants could vary
feeding substances or watering frequency to explore how the real planter would behave. Likewise, she
suggested that the Tamagotchi might learn from the experience enabling using artificial intelligent
algorithms. Following a similar approach, student #311 proposed to show a status summary of all
planters in a large ambient display at the campus using Tamagotchi metaphor. Particularly, ambient
displays were pinpointed as a key channel to promote environmental awareness in the campus. Student
#313 proposed to show graphs illustrating water expenses by student-day, student-semester, etc.,
contrasting the number of litters with the ones contained in a glass of water, in a swimming pool, or the
ones used by the IoT planters. Student #307 proposed to explore the operation of the planter to contrast
the current energy supply with a self-supply system based on solar panels. Student #112 put forward
using Twitter as feed to post actions done on the planters so anyone could track how IoT planters take
care of the plants. Additionally, he also suggested posting environmental variables collected by the
sensor making the data visible illustrations that catch the attention of users. These social interactions
might help students understand the real environmental conditions in the campus and consequently to
take action to reduce pollution in a local area. Similarly, student #311 suggested creating a hashtag (e.g.,
#smartIoTplanters) to track the evolutions of the plants across social networks. Student #307 proposed
that voluntary students could take responsibility to take care of the IoT planters along the semester. He
encouraged them to create an internal competition in which the students who were able to configure
the planters with the most suited parameters according to plant, environmental conditions, but also
considered introducing machine learning algorithms would save extra money for credits to study

55

Sensors 2020, 20, 2227

related modules at the university. Thanks to advances in technology and machine learning, chatbots
have become more popular than ever in recent years. Student #912 proposed using a chatbot (text
or voice chatbot) to automate remote actions regarding the planters using commands. He named it
ChatbIoT and these would be a sample command: (1)–User: “Hi Planter 3!, can you please water the
lettuces at 18:00”.–ChatbIoT: “For how long?”. User: “Five minutes please”. ChatbIoT: “Got it!. I will
water the lettuces for 5 minutes at 18:00. Is that correct?”. User: “Yes, thank you Planter 3!”. ChatbIoT:
“Okay, I will do so. Hasta la vista, baby.”. The ChatbIoT might also help to remember recurrent actions
performed on the planter (e.g., when was the last time that the hydroponic garden was fed).

Many students suggested gamification activities to raise awareness on environmental issues in
the campus. Hence, different actions and rewards were considered to implement these games:

(a) Actions: Student #311 suggested that some students should be rewarded whenever they maintain
the plants and take care of the IoT systems once the module finished. He also suggested creating
a campaign in which students could create 1 min video pills to denounce issues happening in the
campus to boost the impact in social networks. Consequently, the most impacting denounces
would be rewarded. Student #111 suggested reducing paper waste rewarding students who
upload their class notes into Moodle. Student #611 believed that the university could create a
social game suggesting 1 individual achievable challenge for each of the of the 17 sustainable
development goals. Student #612 reported that loyalty recycling in the campus should be
rewarded (e.g., paper, batteries, plastics). Student #812 suggested remunerating car sharing and
the use of bikes to commute to the campus.

(b) Rewards: Student #111 would reward the most environmentally loyal students with scholarships,
ticket bonuses (to exchange in cafeteria, coffee machines, printing machines, or events organized
by the university), or grant priority to book the best learning spaces in the library (e.g., quieter,
with more light). Student #114 would reward these students providing with priority to select
their preferred time slots to attend to the modules distributed in alternative schedules along the
day/week. Student #311 suggested providing visibility to the most active students presenting an
updated ranking in visual displays.

Different students suggested organizing interactive workshops in the course of the semester. For
example, Student #107 suggested creating a physical open space to show the potential benefits of
using renewable energy in the campus. Student #212 proposed to create a mailbox where students
could contribute with ideas to make the campus more sustainable. Student #313 argued on the
importance of healthy habits, foods and plants, and considered that regular workshops should be
organised to make students aware of its benefits in long term. Similarly, student #607 urged to
practically explore the composition, substances, and pesticides in cultivation soils using sensors, and
to promote the understanding on bio food. Student #411 recommended organizing a hackathon to
develop IoT software/hardware to reward the most eco-efficient developments (i.e., computation,
energy consumption).

There were different students suggesting the creation of associations to promote achievable
actions to support the sustainable development goals. Student #107 suggested that creating an
association would have power enough to push a “Campus without plastics “action. Student #111
believed that an association should be able to promote the replacement of toilets to save water, i.e., “a
presence sensor might count the number of litters wasted every day. A monthly summary could be
presented visual displays at the campus”. Student #312 recommended promoting situational awareness
organizing excursions to recycling plants, or places affected by pollution. Additionally, she proposed
to create a compost area in the campus garden. Last but not least, student #307 suggested the use of
alternative media channels such as Radio Campus Sur to disseminate good practices in the context of
environmental awareness.

56

Sensors 2020, 20, 2227

4. Discussion and Conclusions

The rapid spread of IoT technologies has triggered the educational challenge of training future
engineers to be able to design complex sensor-based ecosystems. In Industry 4.0, it is essential
to educate students about the need to implement technological solutions that meet the objectives
of the 2030 agenda, and to ensure that the engineers of the future consider ecological issues in
their implementations.

This work presents the results of a case study in which students of Agricultural Engineer and
Computer Engineer were assigned the task to create IoT systems to promote environmental awareness
in the context of a university campus.

Multidisciplinary groups followed the PBL methodology to investigate IoT solutions that varied in
the sensors, actuators, microcontrollers, plants, soils and irrigation system they used (RQ1). Section 3.1
elaborates on the three types of planters implemented, namely, hydroponic system, vertical garden, and
rectangular planters. Sensors were configured considering the singularities (e.g., irrigation system) of
each planter, but also reflecting on the particular care required by each plant. The holistic architecture
of the components represented in Figure 2, shows that the implementation of the IoT planters covered
up to 9 sensors (thereof 5 were analog, and 4 were digital). The working groups had the ability to
engineer functionally different systems using the same sensors (Section 3.1.1). Different feedback
systems were assembled to foster understanding on environmental issues in the campus i.e., LCD
lights, ambient displays [46], mobile applications, and desktop-oriented dashboards (Section 3.1.2).

The overall architecture implemented in the case study shows that all groups were consistent
featuring a three-layered architecture (Figure 5):

1. Input layer. This layer includes the sensors collecting measurements regularly, and the processing
of the data done by the microcontroller/computer (Section 3.1.3). Data is sent to the process layer
via MQTT protocol.

2. Process layer. Data is stored in a database included in the IoT cloud platform. Rules might be
configured according to the specific requirements of each planter (e.g., send a mobile message
via Telegram alerting the user when the water sensor detects spilled water). This layer includes
input/output API with endpoints to store/request data in/from the IoT platform via HTTP protocol.

3. Output layer. Actions configured to be accomplished by the actuators (i.e., alerts, enable
irrigation system, disable artificial lighting system). It comprises both commands towards IoT
planter maintenance (Section 3.1.5), and feedback information for third party clients using the
API interface.

Figure 5. Frequently implemented three-layered architecture in IoT ecosystems.

The architecture described in this section is frequently implemented in different engineering
areas [47,48]. Therefore, IoT cloud platforms are providing improved services to facilitate a seamless

57

Sensors 2020, 20, 2227

integration of IoT ecosystems (Section 3.1.4). Due to the scalable nature of the proposed architecture,
the ecosystem is easy to extend, and to adapt towards further implementations in educational contexts.

This study achieved the objective of fostering environmental awareness on the campus by
implementing systems that addressed the following important issues:

• Optimization the irrigation systems using weight sensors, water sensors, and warning systems.
Students implemented IoT planters that open/closed the electro-valve based on real time data,
and the particular conditions required by each plant. Likewise, suitable alerts were configured to
minimise energy consumption;

• On-site real-time feedback. The IoT planters developed included on-site feedback that draw
attention to environmental and consumption variables, promoting the discussion in students
walking next to the planters. The LEDs system provided visual feedback specifying when
the irrigation stopped/started, when the CO2 level is over the configured limit, or, when the
environmental sensors return optimal values for the plant. The ambient display was configured
to make the soil variables visible (i.e., humidity, temperature, weight), transforming the gradient
into a colour scale (Figure 3a);

• Online real-time feedback. The systems implemented included different software clients that
obtained and reported real-time data. One example was the touchscreen display, which showed
detailed graphics on the evolution of the variables of each planter (Figure 3c). Another example
was the mobile chatbot, which alerts and traces irrigation schedules (Figure 3b).

Moreover, students were able to suggest alternative educational initiatives to raise awareness
about environment issues in the campus (RQ2). The reported results show that the experience with
the smart IoT planters facilitated students to envision multiple ingenious strategies to improve IoT
planters towards educational purposes (Section 3.3). Different proposals suggested the inclusion of
interactive visual and acoustic displays to increase the impact on students and employees of campus.
The proposals included the use of social networks, and radio media to share the data collected by
the sensors, and the creation of learning objects (in videos, text) to disseminate good practices in the
use of water and energy or alert about the pollution in the campus. Furthermore, students suggested
solutions based on gamification strategies, designing ingenious reward policies for active users raising
environmental awareness. In this context, students were able to identify different achievable activities
that could be promoted within any campus. These initiatives imply an important base of knowledge
towards implementing further actions to promote environmental awareness in educational contexts.

Multidisciplinary education is key to tackle complex projects covering different areas of knowledge.
The implementation of smart IoT planters in educational contexts demanded technical expertise to
assemble hardware components and programing software interfaces. Nonetheless, it also required
specific expertise on agronomics to select convenient plants, soils, planters, and, to install suitable
irrigation systems. In this case study, we wanted to investigate how multidisciplinarity working in
groups might impact learning performance and the expected quality of the outcomes (RQ3). The
results presented in Section 3.2 show that multidisciplinary work among students from different
areas of knowledge is ostensibly beneficial for learning. The groups with the highest degree of
multidisciplinarity obtained higher grades (Figure 4a). Likewise, a similar effect was observed for the
perception of expected quality of the work (Figure 4b). Exploring the subscales comprising teamwork,
the results of the analysis show that the perception of group cohesion (team cohesiveness) and satisfaction
to work in groups are strongly correlated (Table 4). These findings are consistent with previous research
concluding that expected quality predicts satisfaction with teamwork [36]. These results rekindle the
need to promote work in multidisciplinary groups from different areas of expertise to achieve a deeper
knowledge, and to create functionally efficient IoT systems in Higher Education contexts.

Work-in-groups implied both face-to-face and remote to collaboration among group members.
Hence, students could freely use different channels of communication to coordinate their activities. On
the one hand, they had a default institutional platform (based on Microsoft Teams), which featured

58

Sensors 2020, 20, 2227

synchronous and asynchronous messaging system. Alternatively, they might use any personal
messaging applications or social networks. The results collected during the course show that students
were more active using personal messaging application from their own mobile devices (Table 5): i.e.,
WhatsApp, Telegram. However, students were reluctant to use social networks for academic purposes:
i.e., Facebook, Instagram (RQ4). These results must be interpreted together with recent conclusions on
mobile learning showing that the new generation of teachers would be willing to use personal devices
to guide students in educational contexts [49].

The complexity of this study lied in the implementation of a PBL activity across a full
semester synchronizing students from two different engineering degrees (Computer Engineering and
Agricultural Engineering), campuses, and modules (Computer based systems, and Irrigation and
Drainage Technology Systems). This approach is especially difficult to implement since engineering
degree syllabi are usually tightly restricted to specific areas of expertise. The results reported in this
work represent an important technical knowledge base towards the implementation of IoT ecosystems
in CE and AE educational contexts. Likewise, the conclusions of this evaluation provide evidence of
the need to encourage work in multidisciplinary teams to train engineers towards Industry 4.0.

Further research should explore alternative associations between multidisciplinary groups to
define suitable IoT architectures towards suggesting supplementary learning/teaching paths for
industrial, civil, naval, aerospace, or forestry engineering studies.

Supplementary Materials: The following are available online at https://vimeo.com/392389154, Video
eUrbanGarden: Campus Sur. UPM.

Author Contributions: Conceptualization, B.T., V.G.-A., C.G.-C., and S.B.-A.; methodology, B.T.; software, B.T.
and S.B.-A.; validation, V.G.-A. and C.G.-C.; formal analysis, B.T.; investigation, B.T.; resources, V.G.-A. and
C.G.-C.; data curation, B.T.; writing—original draft preparation, B.T.; writing—review and editing, B.T., V.G.-A.,
C.G.-C., and S.B.-A.; visualization, B.T.; supervision, B.T., V.G.-A., C.G.-C., and S.B.-A.; project administration,
V.G.-A. and C.G.-C.; funding acquisition, B.T., V.G.-A. and C.G.-C. All authors have read and agreed to the
published version of the manuscript.

Funding: This work received partial support from the Colegio Oficial de Ingenieros Técnicos Agrícolas de Centro,
and the Escuela Técnica Superior de Ingeniería de Sistemas Informáticos. Likewise, this work has been co-funded
by the Madrid Regional Government, through the project e-Madrid-CM (S2018/TCS-4307).

Acknowledgments: The authors would like to thank Pedro Martínez Jorde for his invaluable support and advice
assembling the components. Likewise, the authors would like to thank Trinidad González González for her expert
assistance checking English language and style.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ge, X.; Zhou, R.; Li, Q. 5G NFV-Based Tactile Internet for Mission-Critical IoT Services. IEEE Internet Things
J. 2019, 14. [CrossRef]

2. Chettri, L.; Bera, R. A Comprehensive Survey on Internet of Things (IoT) toward 5G Wireless Systems. IEEE
Internet Things J. 2020, 7, 16–32. [CrossRef]

3. Kanwal, M.; Malik, A.W.; Rahman, A.U.; Mahmood, I.; Shahzad, M. Sustainable Vehicle-Assisted Edge
Computing for Big Data Migration in Smart Cities. IEEE Internet Things J. 2020, 7, 1857–1871. [CrossRef]

4. Zanella, A.; Bui, N.; Castellani, A.; Vangelista, L.; Zorzi, M. Internet of Things for Smart Cities. IEEE Internet
Things J. 2014, 1, 22–32. [CrossRef]

5. Lasi, H.; Fettke, P.; Kemper, H.G.; Feld, T.; Hoffmann, M. Industry 4.0. Bus. Inf. Syst. Eng. 2014, 6, 239–242.
[CrossRef]

6. Colglazier, W. Sustainable development agenda: 2030. Science 2015, 349, 1048–1050. [CrossRef]
7. Bringslimark, T.; Hartig, T.; Patil, G.G. The psychological benefits of indoor plants: A critical review of the

experimental literature. J. Environ. Psychol. 2009, 29, 422–433. [CrossRef]
8. Doxey, J.S.; Waliczek, T.M.; Zajicek, J.M. The Impact of Interior Plants in University Classrooms on Student

Course Performance and on Student Perceptions of the Course and Instructor. HortScience 2009, 44, 384–391.
[CrossRef]

59

Sensors 2020, 20, 2227

9. Han, K.-T. Influence of Limitedly Visible Leafy Indoor Plants on the Psychology, Behavior, and Health of
Students at a Junior High School in Taiwan. Environ. Behav. 2009, 41, 658–692. [CrossRef]

10. Fjeld, T. The Effect of Interior Planting on Workers and School Children. Int. Hum. Issues Hortic. 2000, 10,
46–52.

11. Khan, A.R.; Younis, A.; Riaz, A.; Abbas, M.M. Effect of Interior Plantscaping on Indoor Academic Environment.
J. Agric. Res. 2005, 43, 235–242.

12. Gómez, J.; Castaño, S.; Mercado, T.; Garcia, J.; Fernandez, A. Internet of Things (IoT) system for the monitoring
of protected crops. Rev. Ing. e Innovación 2018, 5, 24–31.

13. Srbinovska, M.; Gavrovski, C.; Dimcev, V.; Krkoleva, A.; Borozan, V. Environmental parameters monitoring
in precision agriculture using wireless sensor networks. J. Clean. Prod. 2015, 88, 297–307. [CrossRef]

14. Lambebo, A.; Haghani, S. A Wireless Sensor Network for Environmental Monitoring of Greenhouse Gases.
In Proceedings of the ASEE 2014 Zone I Conference, Bridgpeort, CT, USA, 3–5 April 2014.

15. Karim, F.; Karim, F.; Frihida, A. Monitoring system using web of things in precision agriculture. Procedia
Comput. Sci. 2017, 110, 402–409. [CrossRef]

16. Kim, N.S.; Lee, K.; Ryu, J.H. Study on IoT based wild vegetation community ecological monitoring system.
In Proceedings of the International Conference on Ubiquitous and Future Networks (ICUFN), Sapporo,
Japan, 7–10 July 2015.

17. Hinojosa-Pinto, S. Diseño de una Arquitectura IoT para el Control de Sistemas Hidropónicos. Final. Ph.D.
Thesis, Universidad Politécnic de Valencia, Valencia, Spain, 2019. Available online: https://riunet.upv.es/
handle/10251/127335 (accessed on 13 April 2020).

18. Anaya-Isaza, A.; Peluffo-Ordoñez, D.H.; Ivan-Rios, J.; Castro-Silva, J.A.; Ruiz, D.A.; Llanos, L.H. Sistema de
Riego Basado En La Internet De Las Cosas (IoT). In Proceedings of the Jornadas Internacionales FICA, Ibarra,
Ecuador, 14–15 November 2016; Volume 2016, pp. 1–9.

19. Escalas-Rodríguez, G. Diseño y Desarrollo de un Prototipo de Riego Automático Controlado con Raspberry Pi y
Arduino; Universitat Politècnica de Catalunya: Barcelona, Spain, 2015.

20. Alvarez-Campana, M.; López, G.; Vázquez, E.; Villagrá, V.; Berrocal, J. Smart CEI Moncloa: An IoT-based
Platform for People Flow and Environmental Monitoring on a Smart University Campus. Sensors 2017, 17,
2856. [CrossRef]

21. Altares-López, S.; Barrado-Aguirre, S.; Loizu-Cisquella, M.; Tabuenca, B.; García-Alcántara, V.;
Rubio-Caro, J.-M.; Gilarranz-Casado, C. Electrónica y automática de bajo coste aplicada al huerto urbano.
In Proceedings of the Congreso Ibérico de Agroingeniería, Huesca, Spain, 3–6 September 2019; Servicio de
Publicaciones Universidad: Zaragoza, Spain, 2019; pp. 940–952.

22. Hormigo, J.; Rodriguez, A. Designing a Project for Learning Industry 4.0 by Applying IoT to Urban Garden.
IEEE Rev. Iberoam. Tecnol. del Aprendiz. 2019, 14, 58–65. [CrossRef]

23. Khandakar, A.; Chowdhury, M.E.H.; Gonzales, A.J.S.P.; Touati, F.; Emadi, N.A.; Ayari, M.A. Case Study
to Analyze the Impact of Multi-Course Project-Based Learning Approach on Education for Sustainable
Development. Sustainability 2020, 12, 480. [CrossRef]

24. Derler, H.; Berner, S.; Grach, D.; Posch, A.; Seebacher, U. Project-Based Learning in a Transinstitutional
Research Setting: Case Study on the Development of Sustainable Food Products. Sustainability 2019, 12, 233.
[CrossRef]

25. Mantawy, I.M.; Rusch, C.; Ghimire, S.; Lantz, L.; Dhamala, H.; Shrestha, B.; Lampert, A.; Khadka, M.;
Bista, A.; Soni, R.; et al. Bridging the Gap between Academia and Practice: Project-Based Class for Prestressed
Concrete Applications. Educ. Sci. 2019, 9, 176. [CrossRef]

26. Blumenfeld, P.; Soloway, E.; Marx, R.; Krajcik, J.; Guzdial, M.; Palincsar, A. Motivating Project-Based Learning:
Sustaining the Doing, Supporting the Learning. Educ. Psychol. 1991, 26, 369–398.

27. Fruchter, R. Dimensions of Teamwork Education. Int. J. Eng. Educ. 2001, 17, 426–430.
28. Thomas, J.W. A review of research on project-based learning. Learning 2000, 1–46.
29. Cannon-Bowers, J.A.; Tannenbaum, S.I.; Salas, E.; Volpe, C.E. Defining competencies and establishing team

training requirements. In Team Effectiveness and Decision Making in Organizations; Guzzo, R., Salas, E., Eds.;
Jossey Bass: San Francisco, CA, USA, 1995; pp. 333–380. ISBN 9781555426415.

30. Hackman, J.R. A normative model of work team effectiveness. Yale Sch. Organ. Manag. 1983.

60

Sensors 2020, 20, 2227

31. Klimoski, R.J.; Jones, R.G. Staffing for effective group decision making: Key issues in matching people and
teams. In Team Effectiveness and Decision Making in Organizations; Wiley & Sons Ltd.: Toronto, ON, Canada,
1995; ISBN 978-1-55542-641-5.

32. McGrath, J.E. Social Psychology: A Brief Introduction. Sociol. Q. 1964.
33. Salas, E.; Dickinson, T.L.; Converse, S.A.; Tannenbaum, S.I. Toward an understanding of team performance

and training. Teams: Their Training and Performance 1992.
34. Tannenbaum, S.I.; Beard, R.L.; Salas, E. Team Building and its Influence on Team Effectiveness: An

Examination of Conceptual and Empirical Developments. Adv. Psychol. 1992, 82, 117–153.
35. McGrath, J.E. Groups: Interaction and Performance; Cliffs, E., Ed.; Prentice Hall PTR: Upper Saddle River, NJ,

USA, 1984; Volume 14.
36. Bravo, R.; Catalán, S.; Pina, J.M. Analysing teamwork in higher education: An empirical study on the

antecedents and consequences of team cohesiveness. Stud. High. Educ. 2018, 44, 1153–1165. [CrossRef]
37. Pfaff, E.; Huddleston, P. Does It Matter if I Hate Teamwork? What Impacts Student Attitudes toward

Teamwork. J. Mark. Educ. 2003, 25, 37–45. [CrossRef]
38. Gargallo, B.; Suárez-Rodríguez, J.M.; Pérez-Pérez, C. El cuestionario ceveapeu. un instrumento para la

evaluación de las estrategias de aprendizaje de los estudiantes universitarios. Reli. Rev. Electron. Investig. y
Eval. Educ. 2009, 15, 6. [CrossRef]

39. Kyndt, E.; Dochy, F.; Struyven, K.; Cascallar, E. The perception of workload and task complexity and its
influence on students’ approaches to learning: A study in higher education. Eur. J. Psychol. Educ. 2011, 26,
393–415. [CrossRef]

40. Sargent, L.D.; Sue-Chan, C. Does diversity affect group efficacy? The intervening role of cohesion and task
interdependence. Small Gr. Res. 2001, 32, 426–450. [CrossRef]

41. Fransen, J.; Kirschner, P.A.; Erkens, G. Mediating team effectiveness in the context of collaborative learning:
The importance of team and task awareness. Comput. Human Behav. 2011, 27, 1103–1113. [CrossRef]

42. Alavi, M. Computer-Mediated Learning: An Empirical Evaluation. MIS Q. 1994. [CrossRef]
43. Lau, P.; Kwong, T.; Chong, K.; Wong, E. Developing students’ teamwork skills in a cooperative learning

project. Int. J. Lesson Learn. Stud. 2013. [CrossRef]
44. Wageman, R.; Hackman, J.R.; Lehman, E. Team diagnostic survey: Development of an instrument. J. Appl.

Behav. Sci. 2005, 41, 373–398. [CrossRef]
45. Nunnally, J.C.; Bernstein, I. Psychometric Theory; McGraw-Hill: New York, NY, USA, 1967; Volume 226.
46. Tabuenca, B.; Wu, L.; Tovar, E. The PRISMA: A Visual Feedback Display for Learning Scenarios. In

Proceedings of the 13th International Conference on Ubiquitous Computing & Ambient Intelligence, Toledo,
Spain, 5 December 2019; Volume 31, p. 81.

47. Naik, N. Choice of effective messaging protocols for IoT systems: MQTT, CoAP, AMQP and HTTP. In
Proceedings of the 2017 IEEE International Systems Engineering Symposium (ISSE), Vienna, Austria, 11–13
October 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–7. [CrossRef]

48. Kodali, R.K.; Sarjerao, B.S. A low cost smart irrigation system using MQTT protocol. In Proceedings of the
2017 IEEE Region 10 Symposium (TENSYMP), Cochin, India, 14–16 July 2017; IEEE: Piscataway, NJ, USA,
2017; pp. 1–5.

49. Tabuenca, B.; Sánchez-Peña, J.J.; Cuetos-Revuelta, M.J. El smartphone desde la perspectiva docente: ¿una
herramienta de tutorización o un catalizador de ciberacoso? Rev. Educ. a Distancia 2019. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

61

sensors

Article

A Scalable Architecture for the Dynamic Deployment
of Multimodal Learning Analytics Applications in
Smart Classrooms

Alberto Huertas Celdrán 1, José A. Ruipérez-Valiente 2,*, Félix J. García Clemente 2, María Jesús

Rodríguez-Triana 3, Shashi Kant Shankar 3 and Gregorio Martínez Pérez 2

1 Telecommunication Software & Systems Group, Waterford Institute of Technology,
X91 P20H Waterford, Ireland; ahuertas@tssg.org

2 Faculty of Computer Science, University of Murcia, 30100 Murcia, Spain; fgarcia@um.es (F.J.G.C.);
gregorio@um.es (G.M.P.)

3 School of Digital Technologies, Tallinn University, 10120 Tallinn, Estonia; mjrt@tlu.ee (M.J.R.-T.);
shashik@tlu.ee (S.K.S.)

* Correspondence: jruiperez@um.es

Received: 22 April 2020; Accepted: 19 May 2020; Published: 21 May 2020

Abstract: The smart classrooms of the future will use different software, devices and wearables as
an integral part of the learning process. These educational applications generate a large amount
of data from different sources. The area of Multimodal Learning Analytics (MMLA) explores the
affordances of processing these heterogeneous data to understand and improve both learning and
the context where it occurs. However, a review of different MMLA studies highlighted that ad-hoc
and rigid architectures cannot be scaled up to real contexts. In this work, we propose a novel MMLA
architecture that builds on software-defined networks and network function virtualization principles.
We exemplify how this architecture can solve some of the detected challenges to deploy, dismantle
and reconfigure the MMLA applications in a scalable way. Additionally, through some experiments,
we demonstrate the feasibility and performance of our architecture when different classroom devices
are reconfigured with diverse learning tools. These findings and the proposed architecture can be
useful for other researchers in the area of MMLA and educational technologies envisioning the future
of smart classrooms. Future work should aim to deploy this architecture in real educational scenarios
with MMLA applications.

Keywords: smart classrooms; educational technology; multimodal learning analytics; internet of
things; multisensorial networks

1. Introduction

Technology has been transforming education for the last decade. One of the main changes is the
introduction of digital tools that support the learning and teaching practices [1]. Both software
(e.g., smart tutoring systems, learning management systems, educational games, simulations,
or virtual/augmented reality environments) and hardware (e.g., smart whiteboards, smartphones,
remote labs, robots, wearable devices, cameras and other sensors) are present in the classroom and in
our daily life [2,3]. The dynamism of classrooms requires the orchestration of this complex technical
ecosystem, currently performed manually by instructors. Consequentially, novel technologies and
mechanisms should be considered during the deployment of flexible and dynamic smart classrooms.

These rich ecosystems collect large amounts of data about the learning process and context,
opening the door to better understand and improve education. However, handling such volume of
raw data also represents a complicated challenge [4]. Aware of the promises and challenges, the area

Sensors 2020, 20, 2923; doi:10.3390/s20102923 www.mdpi.com/journal/sensors63

Sensors 2020, 20, 2923

of Learning Analytics (LA) focuses on the “measurement, collection, analysis and reporting of data
about learners and their contexts, for purposes of understanding and optimizing learning and the
environments in which it occurs” (SoLAR definition of Learning Analytics https://www.solaresearch.
org/about/what-is-learning-analytics). Within LA, over the last years, there has been a growing
context on Multimodal Learning Analytics (MMLA), which is a sub-field that makes special emphasis
on the usage of multimodal data sources [5]. There has been multiple and diverse MMLA applications,
such as to teach how to dance salsa [6] or to assess oral presentations [7]. While transforming raw data
into meaningful indicators is already daring [4], in this manuscript, we are mostly concerned with
the issue of orchestrating the different data sources and applications. A recent literature review on
MMLA architectures reveals that, due to the complexity of orchestrating the different elements of the
technical ecosystem, most of the proposals offer ad-hoc solutions [8]. Apart from limiting the chances
of reusability in different educational contexts, the effort to develop, deploy, maintain and enable
interoperability among all those ad-hoc solutions does not scale up when the number of solutions
increases [9]. Therefore, the current ad-hoc setup represents an important challenge to systematically
apply MMLA in smart classrooms [10].

Thus, a real futuristic scenario with smart classrooms, where consecutive lessons take place
(with 15–30 min breaks), would require a seamless and scalable reconfiguration of the sensors, devices
and virtual learning environments within the classroom not only to deliver the lesson but also to profit
from highly different MMLA solutions [10]. To address these challenges, we propose to evolve from
traditional management, predefined by the instructor in a manual fashion, towards an automated
approach able to reconfigure the classroom devices without human intervention and in a flexible
and on-demand way. The number of sensors and actuators making up smart classrooms, as well
as the possibility of managing them in a dynamic way make the scalability of the proposed
approach a critical aspect to take into account. This can be possible by deploying a Mobile Edge
Computing (MEC) architecture that combines Network Function Virtualization (NFV) technique [11]
and Software-Defined Networking (SDN) paradigm [12]. NFV will allow for separating the software
logic from the hardware of the classroom devices. It improves the flexibility and dynamism of
device management processes by enabling the deployment, dismantling and reconfiguration of the
technical ecosystem according to the current classroom needs. The SDN paradigm will help smart
classrooms with automatic and dynamic management of network communications, enabling the
Quality-of-Service (QoS) and interoperability of smart classroom devices and applications at the edge.

The objective of this paper is to present an MEC-enabled architecture that integrates SDN/NFV
to deploy, configure and control the lifecycle of MMLA applications and devices making up a smart
classroom as well as its network communications at any time and on-demand. More specifically,
the objectives of this paper are as follows:

1. Use the MMLA literature to present a simulated but realistic scenario that can surface the
limitations of the current technical approaches involved in the orchestration of complex technical
ecosystems in educational practices.

2. Propose an MMLA architecture implementing SDN/NFV principles and exemplify how this
architecture can solve some of the detected challenges to deploy, dismantle and reconfigure the
MMLA applications in a scalable way.

3. Perform several experiments to demonstrate the feasibility and performance of the proposed
architecture in terms of time required to deploy and reconfigure these applications.

The remainder of this paper is structured according to the next schema. Section 2 reviews and
analyzes the state of the art of smart learning and classrooms, MMLA, remote smart classrooms, as well
as the usage of SDN and NFV in different scenarios. Section 3 shows a case study explaining three
different scenarios and their concerns. Section 4 describes the proposed architecture and how it can
address the concerns of the aforementioned scenarios. Section 5 presents some experimental results
that demonstrate the usefulness and performance of our solution. Section 6 discusses the main benefits

64

Sensors 2020, 20, 2923

of our solution compared to the existing ones. Finally, conclusions and future work are drawn in
Section 7.

2. Related Work

2.1. Smart Learning Environments and Classrooms

In the last few decades, multiple terms have been coined with the “smart” label, often referring to
devices (such as phones or watches) or spaces (e.g., classrooms, schools, campus, or cities) that through
the utilization of the appropriate technologies and Internet of Things (IoT) services collect data from
the users and the context to better adapt to the needs of the stakeholders involved. Aligned with this
general idea, Smart Learning Environments (SLEs) are technology-enhanced learning environments
able to offer instant and adaptive support to learners based on the analyses of their individual needs
and based on the contexts in which they are situated [13]. Thus, when we think of a smart classroom,
we should not reduce it to the mere idea of a traditional classroom heavily equipped with virtual
learning environments and mobile, wearable or IoT devices.

While many aspects should be taken into consideration in a smart classroom such as the
architectural design and its ergonomy, or the pedagogical methodology [14], in this paper, we focus
on the infrastructure required to enable the “smart” features, i.e.,: (1) to seamlessly reconfigure such
a complex technological infrastructure for guaranteeing the dynamicity and QoS of smart classrooms;
and (2) to collect data from users and context to feed data for the intelligent adaptation to the learning
needs at enactment time.

2.2. Architectures for Smart Learning Environments and Classrooms

As a recent literature review on smart campus technologies shows [15], paradigms and
technologies such as the IoT, virtualization, wireless network, or mobile terminals are essential
parts to be considered. There have been several attempts to orchestrate this intricate technical
ecosystem. At the beginning, many of them were ad-hoc architectures suitable for specific technologies
(e.g., interactive boards [16]), or focused on concrete problems (e.g., communication issues [17,18])
or features (e.g., remote software control [19]). Lately, authors have started broadening the scope
and flexibility of their proposals. For example, GLUEPS-AR [20,21] combines the lessons learnt
from distributed learning environments and the ideas coming from the MMLA domain. In [21],
Serrano et al. designed an architecture which gathers student actions and their contextual data
during across-spaces learning tasks to feed the adaption features. Another example is the architecture
proposed by Huang et al. [22], which not only conducts the collection, integration and analyses of
contextual data, but also enables the remote control of IoT devices and enhances the usability of the
smart classroom with additional services such as voice recognition and user control interfaces. Previous
colleagues also introduced LEARNSense framework [23], which aims to provide learning analytics
using wearable devices. However, they did not deal with scalability and deployment issues either.

These architectures often focus on supporting data processing activities of the Data Value
Chain (DVC) [24] (namely, collection and annotation, preparation, organization, integration, analysis,
visualization, and decision-making). Each of these data processing activities poses a number of challenges
linked to the problems associated with the data collection and analysis of multimodal data sources [8],
which are common in smart classrooms. However, none of these proposals details how to (re)configure
the smart classroom technical ecosystem to seamlessly switch from one LA application to another. Thus,
in this paper, we try not only to enable the DVC in a smart classroom but also to reconfigure the technical
ecosystem to cope with the requirements of different lessons happening in a row.

2.3. Remote Classrooms and Labs

Related to the technical orchestration challenges of smart classrooms, the virtual and remote lab
field has a long trajectory coordinating IoT services and devices. Remote smart classrooms consider

65

Sensors 2020, 20, 2923

virtualization techniques and virtual machines (VM) to optimize the management of their software
and hardware resources flexibly. Some remote laboratories consider virtual labs as an essential tool to
improve the learning experience by supporting experimentation about unobserved phenomena [25].
In [26], the WebLab-Deusto project [27] used VMs to provide their students with remote smart
laboratories that do not consider WebLab-specific code. Students had access to VMs for a given
time and, once finished, a snapshot was made before restoring and preparing the VMs for new
students. In [28], the authors proposed a solution that considered virtualization techniques to adapt
the resources of remote laboratories at anytime and on-demand. Several experiments demonstrated
how the usage of computing resources was optimized to guarantee the smart labs quality of service.
In [29], the authors presented a mechanism to automatically generate, deploy and publish digitized
labs in a framework of Massively Scalable Online Laboratories (MSOL). The authors demonstrated the
suitability of the proposed mechanism by developing a communication protocol managing the lab
equipment remotely, together with a web platform enabling the management of files and publishing
digitized labs as web applications. Finally, the Smart Device Specification [30,31] provided remote labs
with interesting capabilities. This specification focused on removing dependencies between clients
and servers while enabling the description of remote lab experiments, and the selection of particular
remote lab configurations [32]. However, configurations were not flexible enough because these must
be established in advance by the lab administrator.

2.4. SDN and NFV Applied to Different Scenarios

The combination of SDN/NFV enables flexible, dynamic and on-demand management of
networking and infrastructure resources. Moreover, it facilitates disruptive and heterogeneous
scenarios such as the next generation of mobile networks (5G) [33], healthcare environments [34],
or IoT [35].

Regarding 5G mobile networks, the authors of [36] analyzed the impact of SDN/NFV in the new
vision of current and future network architectures. The authors highlighted how the combination of
SDN/NFV reduces costs while improving the network flexibility and scalability of the infrastructure.
The authors of [37] proposed a 5G architecture using NFV to support the implementation of tactile
internet. A utility optimization algorithm which enables human perception-based tactile internet
was developed to optimize the utility of 5G NFV-based components in this new scenario. In [33],
the authors proposed an architecture which integrates SDN/NFV to manage and orchestrate services
in charge of monitoring and controlling the network plane of a 5G network infrastructure in real-time
and on-demand. Another solution was presented in [38], where authors studied the network flows
migration of 5G networks and pointed out the inverse relationship between network load balancing
and reconfiguration costs. Several experiments demonstrated the previous trade-off and the usefulness
of the proposed solution. Regarding healthcare scenarios, the authors of [34] proposed an SDN/NFV
architecture providing flexible and cost-efficient deployment and control of healthcare applications and
services. In addition, the authors of [39] proposed an SDN/NFV framework to control the life-cycle
and behaviour of physical and virtual medical devices belonging to clinical environments. This work
also presented the novel concept of virtual medical device, an NFV-aware system providing dynamism
in clinical environments. In the IoT context, the authors of [35] introduced an SDN/NFV architecture
providing IoT devices with ultra-low communication latency. Another work was proposed in [40],
where authors designed an architecture to ensure key security and privacy aspects of cyber-physical
systems and IoT environments. SDN and NFV were considered to allow IoT devices and environments
to make security decisions and take dynamic reactions. It is important to mention that learning
scenarios such the proposed in this work can be improved by considering the SDN/NFV capabilities
presented in the previous works.

In conclusion, this section has reviewed some of the most relevant solutions of heterogeneous
smart learning environments and remote classrooms, highlighting the importance of seamless
reconfiguration of smart classroom devices. The lack of solutions able to deploy, dismantle and

66

Sensors 2020, 20, 2923

reconfigure the software of classroom devices has also been demonstrated to ensure the seamless
reconfiguration of devices in real-time and on-demand. Finally, we have shown the potential of
SDN and NFV in other scenarios to achieve flexible and dynamic management of computational,
storage and networking resources.

3. Description of Simulated Case Study

The related work review concluded that one of the main challenges in the area of smart classrooms
and MMLA context is an architectural one. In our attempt to understand in depth this research issue,
this section presents a simulated case study inspired by authentic uses cases extracted from the
literature. The main goal is to ascertain what the specific issues are that our proposed architecture must
address (see in next Section 4), in order to support a seamless reconfiguration of a smart classroom
where different learning activities would happen in a row. With the objective of building this case
study, we reviewed literature on MMLA applications that have been implemented during the last
few years. From these cases, we select three that were aligned with innovative learning trends and
have different objectives, devices, analytics and sensors in order to demonstrate how the architecture
self-organizes from one scenario to the following one. We also order these three cases by increasing
complexity, the first one focuses on individual students, the second one focuses on groups of students
collaborating, and the third one focuses on students collaborating in projects but also on what the
instructor is doing. Next, we describe in depth each one of the scenarios.

3.1. Intelligent Tutoring System in the Classroom

One of the main trends in education over the last decade has been the development of interactive
environments that can be slowly introduced as part of the classroom or homework activities. Two of
the most relevant tools for this purpose are Intelligent Tutoring Systems and Educational Games [41].
Most of the literature meta-reviews that have measured the effectiveness of such tools in the
classroom [41,42] have reported positive effects. However, these studies also agree on the struggle that
instructors face to effectively integrate these tools in their teaching and curriculum. One of the reasons
is not being able to know what students are doing in these virtual environments to orchestrate the
classroom activities and to intervene if necessary. Hence, the need for the development of real-time
dashboards that can provide this information to instructors [43].

The first scenario is grounded in this technological and pedagogical issue, and is strongly inspired
in the previous work of Holstein et al. [44,45]. In this work, they have co-designed a dashboard and
augmented wearable instruments to visualize real-time analytics and visualizations of what each
student is doing in the intelligent tutoring system. Next, we detail the specific details:

• Context: In this scenario, students are practicing a specific topic through the use of an intelligent
tutoring system. Each student is individually interacting with the environment with the computer.
In order to provide just-in-time help, instructors need to know how students are advancing in
this practice and what are their mistakes or misconceptions. A usual class would be around 20 to
40 students.

• Application: When students interact with the intelligent tutoring environment, they generate
events and clickstream data that can be processed to make inferences about their learning process.
Based on these data, the analytics engine generates a number of indicators of students’ current
skill and behavioral states. For example, it can show if a student is confused, needs help, has been
idle for a number of minutes or their areas of struggle, among other pieces of information.
Additionally, each computer has a webcam capturing students’ face and expression, and the
analytics engine applies an affect detection Machine Learning (ML) model to infer students’ affect
status. Instructors receive all these info through a dashboard in real-time and can easily move
within the classroom attending students’ needs.

• Sensors and devices:

67

Sensors 2020, 20, 2923

– Individual students’ devices: Students interact with the ITS by connecting to it as a web
application. The ITS provides of a series of scaffolded exercises adapted to the current level
of skill of each student. Students use the desktop PC available in the classroom.

– Individual students’ webcam: Each student has a front camera in their computer that is
capturing a video feed of their face expression continuously. This feed is used by the
analytics engine to infer the emotional state in time windows.

– Instructor device: The instructor consume the analytics via a dashboard by connecting from
its device (tablet or laptop) to the visualizer provided by the architecture.

3.2. Tabletop Task Collaboration

UNESCO has noted that the future of education should be focused on promoting transverse
skills, such as collaboration [46]. The trend has shifted from individual efforts to group work,
making the development of collaboration skills mandatory with an increasing trend of implementing
collaborative learning activities with high frequency [47]. Therefore, it is not a surprise that numerous
researchers have started to analyze collaborative learning from different perspectives. However,
one of the challenges has been to scale up the analysis of these collaboration studies when there
are many groups to assess or to provide feedback in real-time. Hence, the area of MMLA has been
studying ways to automatically provide empirical evidence that can help to support co-located
collaboration through analytics [48]. In these studies, researchers capture multimodal data from
the collaboration, some examples of data sources include video, audio, physiological signals using
wearables or interaction data with computers or shared devices [49,50].

This second scenario is grounded in this context where we present an application that generates
colocated collaboration analytics while students are interacting on a multi-touch tabletop doing
a collaborative task, which is based on previous work from Maldonado et al. [51]. The details of this
scenario are depicted next:

• Context: In this case scenario, we have students interacting with a shared device known as
interactive multi-touch tabletop, which can easily support face-to-face collaboration with multiple
students interacting at the same time. Students carry out an activity on collaborative concept
making, which is a technique where learners represent their understanding about a topic in
a graphical manner by linking concepts and preposition [52]. At the same time, students are also
conversing with each other and discussing their decisions, and this voice stream is also captured
through a microphone. The class is organized in groups of three students, and a usual class could
have around 7 to 14 groups.

• Application: The objective is to design an application that can help teachers become more aware
of the collaborative process, by making visible interactions that would otherwise be hard to
quantify or notice. The application study collaboration by considering both the verbal interactions
when students are talking to each other, as well as physical touches with the table-top [53].
More specifically, it can use metrics to identify learners that are not contributing enough to
the activity or are dominating it (both physical and verbal interaction), groups that can work
independently or those that do not understand the task. The instructor accesses all these
information though a visualization dashboard in a hand-held device.

• Sensors and devices:

– Group multi table-top: Table-top learning environments are big tactile screens that allow the
collaboration of multiple users at the same time.

– Group overhead depth sensor: A Kinect sensor is used to track the position of each user
automatically detecting which student did each touch.

– Group microphone array: It is located above the tabletop and captures the voice of all the group
members, distinguishing the person which is speaking.

68

Sensors 2020, 20, 2923

– Instructor device: The instructor consume the analytics via a dashboard by connecting from
its device (tablet or laptop) to the visualizer provided by the architecture.

3.3. Programming Project-Based Learning and Instructor Indoor Positioning

Project-based learning has become one of the main forms of instructions across contexts and the
different phases of schooling as it resembles better real-world practices and leads to deeper learning [54].
This method of instruction is very common in programming courses, where students often have to
develop a collaborative group programming project to pass the course (e.g., [55]). One of the challenges
of these collaborative projects is to assess the role and effort of each member of the group in order to
guarantee similar workload distribution, hence avoiding free riding [56]. These project-based learning
courses often have entire sessions devoted to in-class work on the projects. During these sessions,
the teacher moves from group to group solving doubts, which presents a new challenge regarding how
to equitably distribute their time across groups [57]. In this context, we can collect diverse sources of
data from the collaborative programming environments, audio from group conversations, instructors’
position and physiological signals from the students.

This third scenario combines inspiration from the following previous studies: the work of
Spikol et al., and Blikstein to apply MMLA to analyze collaborative project-based learning and
open-ended programming tasks [58,59], the ideas of Ahonen et al., to analyze biosignals during
these programming tasks [60] and finally the proposal of Martínez-Maldonado et al. to estimate the
amount of time spent by the instructions in each group [57]. Therefore, in this scenario, the application
combines an analysis of the collaborative programming actions and conversation of each group,
the physiological signals levels of each student and position of the instructor. More details about this
scenario are depicted next:

• Context: Numerous programming courses have capstone projects where students need to
implement an application that shows evidence of the different concepts acquired thorough
the course. These courses usually have some sessions allocated for students to start developing
these projects in groups while instructors move from one group to another solving doubts.
Each group interacts with a shared programming environment (e.g., [61]) to develop the project
collaboratively. The class is organized in groups of three students, and a usual class could have
around 7 to 14 groups.

• Application: In this scenario, there are two main applications. The first one is to provide analytics
regarding how the collaboration is working out and how the project is advancing. This can include
information regarding areas of struggle based on the code written and code compilations [59],
but also regarding the level of contribution to the project of each member, analysis of the
conversation and engagement levels obtained through the analysis of the physiological signals to
measure activation and engagement levels. The second one is an automatic control of how much
time the instructor has spent helping each one of the groups through indoor positioning; this way,
the instructor can balance the help that each group receives. The instructor can consult all this
information through a dashboard in order to provide just-in-time and personalized support to
each group.

• Sensors and devices:

– Individual students’ devices: Students interact with the collaborative programmings
environment by connecting to it through a web application.

– Individual Empatica E4 wristband: Each student wears an E4 empatica wristband that captures
the heart rate, a three-axis activity through an accelerometer, and the electrodermal activity
of their skin.

– Group microphone array: It is located above each one of the groups’ tables, distinguishing the
person which is speaking.

69

Sensors 2020, 20, 2923

– Group positioning sensor: It is located in each one of the groups’ tables to detect the center
position of each group.

– Instructor positioning badge: It is carried by the instructor when moving around the
class. It implements Pozyx (https://www.pozyx.io/) technology which is an ultra wide
band solution that provides accurate positioning and motion information with sub-meter
accuracy (10 cm).

– Instructor device: The instructor consumes the analytics via a dashboard by connecting from
its device (tablet or laptop) to the visualizer provided by the architecture.

3.4. Requirements of the Previous Scenarios

The case study with the three consecutive scenarios represents an example of how smart
classrooms and MMLA solutions could look in the future. To reach our goal of supporting the seamless
reconfiguration and data collection required to enable the smart adaptation, we have identified four
main requirements emerging from our simulated case study:

Requirement 1—Within-scenario flexibility for instructor-configured data collection,

analytics, visualizations, and recommendations: Aligned with the challenges reported in the
literature [8], the MMLA solutions implemented in the aforementioned scenarios are ad-hoc solutions
that enable the data gathering and analysis to later feed the visualizations and recommendations for
instructors and students. The three use cases that we described have different learning environments,
devices, data sources or analytics pipelines that have been configured to match the necessities of each
use case. Therefore, to be able to scale up the number of MMLA solutions used in a single classroom
and scenario, it is necessary to provide a scalable architecture compatible with the different MMLA
applications [9,10] by abstracting these functionalities in scalable and interoperable modules that can
be automatically re-configured for each MMLA application.

Requirement 2—Between-scenario flexibility for automatic deployment of the MMLA

solutions: The kind of equipment, devices, setup and sensors necessary to perform these applications
makes smart classrooms expensive to have. Therefore, we would expect that, in the future,
these classrooms are fully booked, perhaps having a short time of 15–30 min in-between sessions.
In our case study, we presented three consecutive use cases to illustrate this issue, but this might be
a conservative estimate. The current setup makes it very challenging to seamlessly and automatically
re-configure the technical ecosystem and to also enable the data collection and analysis in short periods
of time. In our case study without a proper architecture, each teacher would be in charge to deal
with the technological complexity of the MMLA application in each class, which in reality is not
a feasible approach. This raises the necessity to have a seamless transitions between the scenarios of
our simulated case study.

Requirement 3—Seamless privacy and authentication configurations: The privacy of users,
and of students in this case scenario, has been one of the topics on the spotlight during the last
years [62]. The regulations have agreed that we need to provide control to the users so that they
can specify how their data can be used. Therefore, even though these MMLA solutions seek to help
students in their learning process, students and instructors should still have the right to opt-in or -out
so that their data are not collected and/or used. In the case scenario, each application would need to
manage this privacy and authentication issues separately, which is sub-optimal. Therefore, we need to
provide a centralized system where students can configure their privacy and authentication options to
apply across all the smart classroom applications, and we also need to easily identify students across
applications and devices so that we can properly process their data.

Requirement 4—Easy communication with external data sources: Thanks to the institutional
data and the ICT adoption in our daily routines, there can be numerous data sources (both formal
and informal) that can hold valuable information to understand students’ context and knowledge.
Some examples might include the classical LMSs in formal learning institutions, other online
courses, academic records or background information. In the case study, each application would

70

Sensors 2020, 20, 2923

have developed their own interface to interact with these external data sources. Thus, instead
of implementing ad-hoc solutions to benefit from those external data sources, there is a need for
generating services and APIs that can be used across applications.

4. Architecture

This section describes our MEC/SDN-oriented architecture that satisfies the aforementioned
requirements, and how it integrates different components to reconfigure and manage the learning
applications running on top of classroom devices automatically, on-demand and in real-time. Figure 1
shows the levels, components and communications of the proposed architecture. The main elements,
following a top-down approach, are the next ones:

Figure 1. Architecture oriented to the Mobile Edge Computing (MEC) paradigm.

• External Data Sources. This level contains different external databases and tools such as data from
the Academic Records, Learning Management System (LMS) or Massive Open Online Courses
(MOOC) that can feed our architecture with relevant students’ data.

• Learning Analytics Platform. It hosts the components focused on analysing data provided by
external sources and generated during the realization of learning activities.

• MEC System Level Management. This level is focused on (1) processing requests from instructors to
reconfigure heterogeneous classroom devices in real-time and on-demand, (2) making decision
and orchestrating them to configure learning applications running on top of classroom devices,
and (3) sensing classroom devices to detect misconfigurations or problems.

• MEC Host. Heterogeneous classroom devices, also known as MEC Hosts, such as electronic
blackboards, tablets, personal computers, servers, or Raspberry Pi that need to be reconfigured
according to the current learning course or subject.

• MEC Host Level Management. Level hosting the different managers able to control the life-cycle of
the Virtualization infrastructure, MEC Platform, and MEC Apps running on the MEC Hosts.

• Network Level. This level contains the network infrastructure enabling the communication of MEC
Hosts and the rest of the levels making up the architecture.

In the following subsections, we explain in detail the components and main levels of our platform.

71

Sensors 2020, 20, 2923

4.1. Learning Analytics Platform

The Learning Analytics Platform has the different modules and components that are necessary
to implement learning analytics applications that have as a final objective to improve the learning
experience and outcomes of students. With that goal in mind, the platform hosts different components
able to acquire, process, analyze, recommend and visualize relevant data generated during the
interaction of students with learning applications. Among the most relevant components, we highlight
the Learning Record Store (LRS), which acquires and stores students’ interaction registers generated by
learning applications. Those registers are sent to the Analytics Engine component to analyze them by
using ML and statistical techniques. According to the registers, the outputs of the Analytics Engine and
some trained models, the Recommender component provides students and instructors with suggestions
to improve the learning experience. Finally, the Visualizer component exposes a graphical interface that
allows students and instructors to interact with registers, data and outputs of the learning platform.

4.2. MEC System Level Management

The MEC System Level Management deals with the management of the classroom devices and
the behaviour of the learning applications running on top. In this context, the Operation Support
System (OSS) is focused on the the logic of the architecture. This element provides instructors
with an interface to define the rules that enable the reconfiguration of the learning applications and
software running on top of the heterogeneous devices belonging to a classroom. These rules will
be provided to the Decision component to identify particular actions to be taken. Once a decision is
made, the Orchestrator receives the notification and interacts with the managers and controllers of the
lower levels to configure the network, the classroom devices and their learning applications. Finally,
the Acquisition component senses data generated by the classroom devices and their applications and
services (not only learning applications) to detect misconfigurations or problems. When one problem
is detected, the Decision and Orchestrator modules come into play to decide, schedule, and spread the
required actions.

4.3. MEC Host Level

The MEC Host Level is composed of two planes, the control and data planes.
The control plane is called MEC Host Level Management and it is in charge of deploying, controlling

and dismantling learning applications, instantiated as MEC Apps that run on top of heterogeneous
classroom devices (MEC Hosts). The MEC Host level management contains two managers: the MEC
Platform Manager and the Virtualization Infrastructure manager (VIM). The MEC Platform Manager
controls the whole life-cycle of MEC Apps, and the VIM manages the computation, storage and
networking virtual and physical resources of the Virtualization Infrastructure.

In the data plane, we find the MEC Hosts, which are classroom devices providing computational,
storage, and networking resources to execute learning applications. Each MEC Host contains
a Virtualization Infrastructure, a MEC Platform and one or more MEC Apps. MEC Apps can be deployed
as learning applications, components of the Learning Analytics Platform (commented on in Section 4.1)
and other applications like, for example, those oriented to improve the learning courses security and
privacy). MEC Apps can be instantiated in Virtual Machines (VM) or containers running on top of
the virtual infrastructure. The virtualization infrastructure consumes the hardware of heterogeneous
learning devices such as computers, digital blackboards, or cameras and provides computational,
storage and networking virtual resources. Finally, the MEC platform provides essential and generic
MEC Services needed to run MEC Apps. These services can be specific for particular applications or
generic enough to be shared among several MEC Apss. Examples of MEC Services can range from
communication protocols to access control mechanisms or cryptographic material.

72

Sensors 2020, 20, 2923

4.4. Network Level

The Network Level contains two types of elements: heterogeneous Networks and the Network
manager. The networks represent the hardware and software networking resources needed to connect
MEC Hosts and their MEC Apps. The Network Manager allocates the SDN Controller, which has the
global view of the network status as well as the logic of the network to control the data plane where
heterogeneous networks are located.

4.5. Solutions Provided by our Architecture to the Previous Requirements

Solution to Requirement 1—Within-scenario flexibility for instructor-configured data

collection, analytics, visualizations and recommendations: Easy and flexible reconfigurations of
the instructors’ and learners’ applications, such as the one needed in the first scenario, are enabled by
our solution. Figure 2 shows the interaction between the components of our architecture to reconfigure
the storage and processing capabilities of the instructor host. For clarity’s sake, we show how the
architecture reconfigures two MEC Apps running on top of an MEC Host. However, this functionality
could be extended to several MEC Hosts and applications. The 1st step of Figure 2 shows when
the decision of reconfiguring the instructor host is made by the Decision component. After that,
the Orchestrator provides the MEC Platform Manager with the MEC Host and the reconfiguration
details of the new storage and processing capabilities. Once received, the MEC Platform Manager
interacts with the instructor host to access the storage and processing MEC Apps and reconfigure
them (steps from 3 to 6). When the reconfigurations have finished, the action is confirmed to the
Orchestrator (step 7).

Figure 2. Architecture reconfiguring two MEC Apps running on top of an MEC Host.

Solution to Requirement 2—Between-scenario flexibility for automatic deployment of the

MMLA solutions: Aligned with the capabilities shown in the previous issue and focused on
addressing this one, the proposed architecture deploys, configures and dismantles MEC Hosts and
their applications in real-time and on-demand. Following the previous example, Figure 3 shows
how the components of our architecture dismantle the instructor host when a given application is
finished, and deploy new ones with different capabilities for the next class. In the 1st step of Figure 3,
the Decision component interacts with the Orchestrator to notify the necessity of changing the instructor
host. After that, the Orchestrator provides the VI Manager with the required info to dismantle the
MEC Host (step 2). Once the notification is received, the VI Manager dismantles the host and confirms
the Orchestrator the action (steps 3–5). When the old instructor host has been dismantled, the next
step is to deploy a new MEC instructor host with more hardware resources (processor and graphics).
This process is shown from 6 to 9 in Figure 3. At this stage, our architecture has already deployed a new

73

Sensors 2020, 20, 2923

MEC instructor host with enough hardware resources to meet the requirements of the next learning
analytics application and the next step is to deploy a new MEC App with visualization tools and
capabilities. For that, the MEC Platform Manager is the component in charge of deploying, configuring
and confirming the new MEC App (steps from 10 to 13). Finally, the Orchestrator communicates with
the SDN Controller to include a new rule in the switch flow table, and route the network packets sent
and received by the new instructor host and its applications (step 14).

Figure 3. Architecture dismantling an old MEC Host, and deploying a new MEC Host and MEC App.

Solution to Requirement 3—Seamless privacy and authentication configurations: Our architecture
is able to deploy MEC Apps, providing students with authentication and authorization capabilities,
in real-time and on-demand. On the one hand, depending on the learning course security requirements,
the architecture will deploy and configure an MEC App providing several authentication mechanisms with
different levels of security. On the other hand, the architecture will deploy another MEC App allowing
students to define their privacy preferences by defining user-friendly policies. In this context, students
will determine what pieces of sensitive data can be shared, who or what learning tools can process
the sensitive data, how long data can be processed or stored, or what can be done with the data,
among others. Once defined the policies, they will be sent to the components of the Learning Analytics
Platform to ensure that they are considered during the data management and storage processes.

Solution to Requirement 4—Easy communication with external data sources: As can be seen
on top of Figure 1, the design of our architecture considers external data sources such as MOOC, LMS,
or academic datasets feeding the Learning Analytics Platform with additional data that will be critical
for the data analysis processes performed by its components.

5. Experimentation Results

A key aspect of our proposal is how the architecture deploys and configures the learning
ecosystem automatically for each scenario, which addresses the aforementioned Requirements 1
and 2. We consider these two requirements as the key ones that are necessary to bring scalability and
interoperability to smart classrooms and MMLA applications, and thus we focus our experimentation
in this section on those two aspects. The deployment process is dealt by the Orchestrator that must
consider the features of each classroom device and its performance with different MEC Apps. In this

74

Sensors 2020, 20, 2923

section, we show experimental results regarding computational performance and efficiency of typical
classroom devices with practical learning tools.

With a model of deploying MEC Apps based on containers, we investigate experiments about three
types of learning tools: high-intensive computing, medium-intensive computing and high-intensive
data consuming. The high-intensive computing MEC App is a face-recognition that detects all the
faces and face encoding in each frame of a video source. This application is a Python program based
on dlib library using a Histogram of Oriented Gradients (HOG) face detector. The medium-intensive
computing MEC App is a feature extractor for Automatic Speaker Recognition (ASR). This application
is also a Python program based on the Mel-Frequency Cepstral Coefficients (MFCC) that analyzes
an audio source periodically each second. In addition, the high-intensive data consuming MEC App
is a computational physics simulation that plots a 3D surface. This application is a Python program
based on Matplotlib library for creating animated visualizations.

5.1. Testing Environment

We deployed a testing environment composed of three MEC Hosts with different hardware
resources, which are representative of a real smart classroom; these are a server, a desktop PC and
a laptop. These devices can be used in the different scenarios presented in Section 3. The server was
an Intel machine with dodeca-core (12 cores) 3.50 GHz CPU and 32 GB DDR4 RAM, the PC was an
Intel machine with octa-core (8 cores) 3.40 GHz CPU and 16 GB DDR4 RAM, and the laptop was an
Intel Celeron machine with dual-core 1.10 GHz CPU and 4 GB DDR4 RAM. In particular, laptops have
similar computational capabilities to tablets and mini-PCs, so our experimental results with laptops
are comparable to tablets and mini-PCs.

For each device, we set up a realistic evaluation environment with the typical services and
graphical interface used to reduce the overhead. The operating system of all hosts was Ubuntu 64-bit
18.0.4, and the containers were deployed by the latest version (19.03.6) of Docker Engine. No more
additional software components were needed to deploy the learning tools on our testing environment.
Each learning tool was allocated within a unique Docker container providing a single learning task.

Our testbeds evaluated the performance and efficiency of our solution by increasing the number
of containers on each type of MEC Host. This allows for observing the performance variance across
different scenarios according to their capabilities. We expect that changing between scenarios would
have an impact in the performance, e.g., the learning device installed in a classroom work table would
require much more learning tools in a Tabletop Task Collaboration scenario than a Programming
Project-based Learning scenario. Another possibility is that there could be changes in the number of
students taking each class, hence affecting the computation requirements. Therefore, the performance
for each configuration must be well-known by the Orchestrator to properly reconfigure the learning
devices in each class.

5.2. Docker Container with High-Intensive Computing Application

There are several learning scenarios that can require a face detection tool to identify students or
infer affect states. As shown in Section 3 for an Intelligent Tutoring System, an MEC Host with a camera
capturing a video feed of student face expression can be used to infer the affect (e.g., surprise, neutral,
confusion and angry) and identify when a student needs help. We used dlib library to implement
a HOG face detection MEC App and created a Docker container that provides this app in our testing
environment. The HOG is one of the most reliable and applied algorithms for person identification,
but also an intensive computational task. Therefore, it is essential to properly manage the available
computing resources in the learning device that can be dedicated to the execution of this learning tool.

In order to evaluate the performance and efficiency of the Face Recognition application in Docker
containers, our testbed used a H.264 video source with 640 × 360 image size and applied the HOG
algorithm in each video frame. We used the analyzed frames per second (FPS) as performance
evaluation index to assess how fast the HOG algorithm is. If a configuration has higher FPS value,

75

Sensors 2020, 20, 2923

it has higher video quality and can produce smoother video. Figure 4 shows the experimental results
obtained when increasing the number of containers for each type of learning device. The left graph
depicts the maximum analyzed FPS for each configuration and the right graph shows how many CPU
cores are overloaded.

(a) Face detection and encoding speed. (b) CPU usage per container.
Figure 4. Performance results for Face Recognition application in Docker containers.

As it can be seen in Figure 4, the maximum speed achieved was above 6 FPS for configurations
with up to six containers in server and up to four containers in PC, whereas the throughput in the
laptop was much lower with less than 3 FPS. In addition, the server was absolutely overloaded with
12 containers, the PC with eight containers and the laptop with two containers. Therefore, we observe
that each container consumed approximately one CPU core. These experimental results imply that
a face detection tool can be provided in different configurations e.g., a PC with eight cameras could
serve for a work table shared by eight students or a laptop for one single student. Note that the server
achieved the highest computation performance, and this performance could further improve if it
included a graphics card to implement the HOG algorithm.

5.3. Docker Container with Medium Computing Application

Identifying students via their voice in a microphone can be useful for several learning scenarios,
as shown in our use case related to project-based learning (see Section 3). An MEC Host with
a microphone capturing the meeting audio can identify students, perform speech-to-text transcription,
calculate speaker metrics (e.g., speaking time or counters) and infer the emotional state (e.g., angry,
boring or excited).

We implemented an MEC App based on MFCC to recognize persons and created a Docker
container with this tool to carry out our experiments. The MFCC are widely used in automatic speech
and speaker recognition and allow transforming the audio source into a sequence of feature vectors
that characterize voice signals. Our MEC App extracted feature vectors in one second window in
order to apply a real-time student recognition. The process to calculate MFCCs consisted in framing
the signal in short windows to later apply specific mathematical operations that convey a medium
computing task.

In order to evaluate the performance and efficiency of the ASR application in Docker containers,
our testbed used an audio signal stored and processed each second using MFCC with a length of the
analysis window of 25 ms and a step between successive windows of 10 ms. In this case, we used the
processing time as the performance evaluation index because this indicator shows how fast the MFCC
algorithm is. If a configuration has slower processing time, it can process more audio sources and
serve more users. Figure 5 shows the experimental results obtained when increasing the number of
containers for each type of MEC Host. The left graph depicts the processing time to analyze the audio
signal each second and the right graph shows how many CPU cores are used in the processing.

76

Sensors 2020, 20, 2923

(a) Feature extractor speed. (b) CPU usage per container.
Figure 5. Performance results for Automatic Speaker Recognition application in Docker containers.

The audio feature extractor is a relatively low computationally expensive task that is
well-supported in server, PC and even laptop. As shown in Figure 5, the processing time was
always below 100 ms for our three learning devices and below 30 ms for server and PC. However,
the CPU overload was relevant for PC when the number of containers doubles its number of cores.
In addition, the laptop was stuck when the number of containers was greater than 10, whereas the
server was not overloaded with up to 20 containers. These experimental results show that an ASR tool
can be easily provided in our use cases, e.g., a laptop/tablet with microphone could serve a 6-student
work group or a server with 20 students simultaneously.

5.4. Docker Container with a High-Data Consuming Application

The interactive simulation-based learning can be useful in multiple scenarios, for example using an
ITS in the classroom, as shown in Section 3. When students interact with the simulation, they generate
events and clickstream data that can be stored and processed to calculate usage metrics (e.g., idle times
or event counters) and even infer about their learning experience (e.g., difficulty or simplicity).

There are several types of interactive simulations which could be used in a classroom. Physics
simulations are widely used to improve the learning process in science and engineering education.
We implemented a Matplotlib MEC App to build an animated physics simulation that shows a wave
motion. In particular, the physics simulation used a 1.5 GB array to plot a 3D surface animated.
The size of plotting array implied that the simulation carried out a high data consuming task for
learning devices or MEC Hosts.

In order to experiment our physics simulation in Docker containers, our testbed updated the
plotting constantly in order to evaluate the performance in each learning device. We used the changes
per second (CPS) of the simulation as the performance evaluation index because this indicator shows
how fast the simulation is running. If a configuration has higher CPS value, it has higher simulation
quality and can produce more fluent simulations. Figure 6 shows the experimental results obtained
when increasing the number of containers for each type of learning device. The left graph depicts the
maximum CPS for each configuration, and the right graph shows the percentage of RAM memory used.

Given the results shown in Figure 6 and that our physics simulation required 4 CPS at least to
show a fluent animation, a laptop served only one container with our simulation. However, the server
and PC could achieve 20 and 14 containers, respectively. Moreover, the memory was full and additional
containers were rejected when the server launched more than 20 containers, the PC 14 containers,
and the laptop 2 containers. These experimental results show that a high-data consuming simulation
can be used in different configurations, e.g., a laptop/tablet could be used for a single student and a
server to up to 20 students in the classroom.

77

Sensors 2020, 20, 2923

(a) Simulation speed. (b) RAM memory usage per container.
Figure 6. Performance results for Computational Physics simulation in Docker containers.

6. Discussion

Among the different aspects to be taken into consideration in a smart classroom [14], the proposed
architecture focuses on orchestrating the complex technical ecosystem and enabling its “smart”
features. The architecture has been designed bearing the following main requirements in mind:
within-scenario and between-scenario flexibility, seamless privacy and authentication configurations,
and easy communication with external data sources.

The experimental results regarding the performance and scalability of our architecture show
how heterogeneous classroom devices can be managed in an automatic and efficient way to host
different amounts and types of learning tools and applications. Concretely, we demonstrated the
scalability of our architecture when an increasing number of Dockers, with diverse computational
requirements, is deployed over three widely used hardware configurations such as laptops, personal
computers and servers. However, no direct comparison of the obtained results with those reported
in the literature was possible since they highly depend on the hardware and software configuration.
Furthermore, most MMLA studies evaluate their results based on educational outcomes but not on
technical performance.

The automatic and flexible management of the proposed architecture has been motivated through
the case study presented in this paper, which illustrates the limitations of current solutions and how
our proposal offers a seamless switch between three different learning scenarios happening in the
same smart classroom. While existing architectures for smart classrooms often involve ad-hoc digital
devices and tools that can be used in specific ways [15,22], in our proposal, the different modules of
the ecosystem can be orchestrated for multiple purposes in scalable and interoperable ways. Moreover,
the human intervention required to adapt and reconfigure the transition between heterogeneous
learning lessons is significantly reduced and can be automatized.

The presented architecture could be of great value also for the remote lab community.
While virtualization techniques had been already explored [27–29], this architecture could increase the
flexibility of remote labs, by supporting the configuration and deployment of remote experiments [32].
Moreover, it supports the collection of multimodal data (coming both from hardware and software)
necessary to support the smart adaptation to the learning process.

Regarding the instant and adaptive support expected from smart classrooms [13], our proposal
could become the base upon which other architectures could build, uncoupling the multimodal
challenges of the DVC [4,63]. More concretely, our contribution helps to address the lower level
technical requirements of the DVC, and more conceptual architectures (e.g., [21,22,63]) could build on
top of it. Thus, our proposal contributes to diminishing the need for ad-hoc MMLA solutions often due
to the technical constrains to the ecosystem [8]. As a consequence, relying on a lower level architecture
will open the door to multiple analysis and adaptability schemes in smart classrooms, addressing the
reusability and interoperability problems among MMLA solutions [9,10].

78

Sensors 2020, 20, 2923

The integration of SDN/NFV in our architecture allows instructors to reduce their workload
avoiding the manual configuration of classroom devices according to the topic and purpose of each
subject. It also reduces the complexity of the smart classrooms management as well as optimizes the
usage of classrooms devices. In a nutshell, smart classrooms equipped with our architecture will be
able to reconfigure and optimize the learning applications of their devices ant their communications
according to the current subject topic and number of students. It will be done in real-time and
on-demand. In contrast, as it has been demonstrated in Section 2, existing solutions using virtualization
techniques [25,26] are not able to reconfigure the whole remote lab in a flexible way. They just consider
predefined VMs implementing particular learning applications that are instantiated and dismantled.
It means that they miss critical aspects such as the flexible management of communications, essential
to guarantee QoS issues when the number of students increases, and the optimization of hardware
resources of learning devices such as CPU, memory and storage.

It is important to note that one of the main limitations of the proposed architecture is the
complexity of its deployment. The usage of resource-constrained devices such as digital boards or
cameras makes very complex their management through current virtualization techniques. Fortunately,
this issue is limited when other devices such as tablets and personal computers are considered in smart
classrooms. Additionally, the architecture is still to be tested in a real scenario, which is part of the
future work. Moreover, we argue that the architecture represents an improvement with respect to
other studies. However, we cannot present a direct comparison in terms of efficiency because most
MMLA studies do not report on the performance of the architectures from the technical point of view.
Finally, we still have not tackled the challenge of how instructors will be able to interact with this
architecture through a user-friendly authoring tool.

7. Conclusions and Future Directions

Smart classrooms require a dynamic and flexible orchestration of their complex ecosystem,
currently performed manually by instructors that use ad-hoc learning applications. With that goal
in mind, this paper the following three key research problems: (1) the limitations of current learning
solutions in terms of flexible and scalable management of devices belonging to simulated and realistic
learning scenarios; (2) the suitability of technologies and their integration in an architecture able to
provide the level of flexibility and dynamicity required by current learning environments; and (3)
the scalability and performance of the architectures. With challenges in mind, this paper proposes
an MEC-enabled architecture that considers SDN/NFV to reconfigure the software and hardware
resources of classroom devices in real-time and on-demand. A case study inspired by authentic learning
analytics applications extracted from the literature has been proposed to highlight the limitation of
the existing solution and demonstrate the added value of our architecture. The experimental results
demonstrate acceptable computational performance and efficiency when typical classroom devices
such as servers, personal computers or laptops implementing practical learning tools are deployed and
reconfigured. Specifically, we investigated experiments with different MEC Apps such as face detector,
ASR and physics simulation, each one with different computational requirements. The results point
out the potential of our architecture to manage heterogeneous classroom devices in an automatic and
efficient way.

As future work, we plan to implement and deploy the proposed architecture in a realistic smart
classroom scenario to demonstrate its usefulness with real students. In this sense, we will integrate
our architecture in existing platforms able to deploy, dismantle and control the life-cycle of VMs and
containers such as OpenStack, as well as control the network infrastructure and the communications
of the smart classroom by using OpenDaylight as SDN Controller.

Author Contributions: Conceptualization, A.H.C., J.A.R.-V., F.J.G.C. and M.J.R.-T.; Funding acquisition, G.M.P.;
Methodology, A.H.C., J.A.R.-V. and F.J.G.C.; Resources, G.M.P.; Software, F.J.G.C.; Supervision, J.A.R.-V.;
Visualization, A.H.C. and F.J.G.C.; Writing—original draft, A.H.C., J.A.R.-V., F.J.G.C., M.J.R.-T. and S.K.S.;

79

Sensors 2020, 20, 2923

Writing—review and editing, A.H.C., J.A.R.-V., F.J.G.C., M.J.R.-T., S.K.S. and G.M.P. All authors have read
and agreed to the published version of the manuscript.

Acknowledgments: This work has been partially supported by the Government of Ireland post-doc
fellowship (grant code GOIPD/2018/466 of the Irish Research Council), the Spanish Ministry of Economy
and Competitiveness through the Juan de la Cierva Formación program (FJCI-2017-34926), and the European
Union via the European Regional Development Fund and in the context of CEITER (Grant agreements No.669074).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Martín-Gutiérrez, J.; Mora, C.E.; Añorbe-Díaz, B.; González-Marrero, A. Virtual technologies trends in
education. EURASIA J. Math. Sci. Technol. Educ. 2017, 13, 469–486.

2. Timms, M.J. Letting artificial intelligence in education out of the box: Educational cobots and smart
classrooms. Int. J. Artif. Intell. Educ. 2016, 26, 701–712. [CrossRef]

3. Borthwick, A.C.; Anderson, C.L.; Finsness, E.S.; Foulger, T.S. Special article personal wearable technologies
in education: Value or villain? J. Digit. Learn. Teach. Educ. 2015, 31, 85–92. [CrossRef]

4. Ochoa, X.; Worsley, M. Augmenting Learning Analytics with Multimodal Sensory Data. J. Learn. Anal. 2016,
3, 213–219. [CrossRef]

5. Blikstein, P.; Worsley, M. Multimodal Learning Analytics and Education Data Mining: using computational
technologies to measure complex learning tasks. J. Learn. Anal. 2016, 3, 220–238. [CrossRef]

6. Romano, G.; Schneider, J.; Drachsler, H. Dancing Salsa with Machines—Filling the Gap of Dancing Learning
Solutions. Sensors 2019, 19, 3661, doi:10.3390/s19173661. [CrossRef] [PubMed]

7. Roque, F.; Cechinel, C.; Weber, T.O.; Lemos, R.; Villarroel, R.; Miranda, D.; Munoz, R. Using Depth
Cameras to Detect Patterns in Oral Presentations: A Case Study Comparing Two Generations of Computer
Engineering Students. Sensors 2019, 19, 3493, doi:10.3390/s19163493. [CrossRef]

8. Shankar, S.K.; Prieto, L.P.; Rodríguez-Triana, M.J.; Ruiz-Calleja, A. A review of multimodal learning analytics
architectures. In Proceedings of the 2018 IEEE 18th International Conference on Advanced Learning
Technologies (ICALT), Mumbai, India , 9–13 July 2018; pp. 212–214.

9. Hernández-García, Á.; Conde, M.Á. Dealing with complexity: Educational data and tools for learning
analytics. In Proceedings of the Second International Conference on Technological Ecosystems for Enhancing
Multiculturality, Salamanca, Spain, 1–3 October 2014; pp. 263–268.

10. Di Mitri, D.; Schneider, J.; Specht, M.; Drachsler, H. The Big Five: Addressing Recurrent Multimodal
Learning Data Challenges. In Proceedings of the 8th International Conference on Learning Analytics and
Knowledge, Syndey, Australia, 5–9 March 2018.

11. ETSI NFV ISG. Network Functions Virtualisation (NFV); Network Operator Perspectives on NFV Priorities for 5G;
Technical Report; ETSI White Paper; ETSI: Nice, France, 2017.

12. Singh, S.; Jha, R.K. A survey on software defined networking: Architecture for next generation network.
J. Netw. Syst. Manag. 2017, 25, 321–374, doi:10.1007/s10922-016-9393-9. [CrossRef]

13. Hwang, G.J. Definition, framework and research issues of smart learning environments-a context-aware
ubiquitous learning perspective. Smart Learn. Environ. 2014, 1, 4. [CrossRef]

14. Bautista, G.; Borges, F. Smart classrooms: Innovation in formal learning spaces to transform learning
experiences. Bull. IEEE Tech. Committee Learn. Technol. 2013, 15, 18–21.

15. Muhamad, W.; Kurniawan, N.B.; Yazid, S. Smart campus features, technologies, and applications:
A systematic literature review. In Proceedings of the 2017 International Conference on Information
Technology Systems and Innovation (ICITSI), Bandung, Indonesia, 23–24 October 2017; pp. 384–391.

16. Xie, W.; Shi, Y.; Xu, G.; Xie, D. Smart classroom-an intelligent environment for tele-education.
In Proceedings of the Pacific-Rim Conference on Multimedia, Beijing, China, 24–26 October 2001; Springer:
Berlin/Heidelberg, Germany, 2001; pp. 662–668.

17. Snow, C.; Pullen, J.M.; McAndrews, P. Network EducationWare: An open-source web-based system for
synchronous distance education. IEEE Trans. Educ. 2005, 48, 705–712. [CrossRef]

18. Qin, W.; Suo, Y.; Shi, Y. Camps: A middleware for providing context-aware services for smart space.
In Proceedings of the International Conference on Grid and Pervasive Computing, Taichung, Taiwan, 3–5
May 2006; Springer: Berlin/Heidelberg, Germany, 2006; pp. 644–653.

80

Sensors 2020, 20, 2923

19. Suo, Y.; Miyata, N.; Morikawa, H.; Ishida, T.; Shi, Y. Open smart classroom: Extensible and scalable learning
system in smart space using web service technology. IEEE Trans. Knowl. Data Eng. 2008, 21, 814–828. [CrossRef]

20. Muñoz-Cristóbal, J.A.; Rodríguez-Triana, M.J.; Gallego-Lema, V.; Arribas-Cubero, H.F.; Asensio-Pérez, J.I.;
Martínez-Monés, A. Monitoring for awareness and reflection in ubiquitous learning environments. Int. J.
Hum.–Comput. Interact. 2018, 34, 146–165. [CrossRef]

21. Serrano-Iglesias, S.; Bote-Lorenzo, M.L.; Gómez-Sánchez, E.; Asensio-Pérez, J.I.; Vega-Gorgojo, G.
Towards the enactment of learning situations connecting formal and non-formal learning in SLEs.
In Foundations and Trends in Smart Learning; Springer: Singapore, 2019; pp. 187–190.

22. Huang, L.S.; Su, J.Y.; Pao, T.L. A context aware smart classroom architecture for smart campuses. Appl. Sci.
2019, 9, 1837. [CrossRef]

23. Lu, Y.; Zhang, S.; Zhang, Z.; Xiao, W.; Yu, S. A Framework for Learning Analytics Using Commodity
Wearable Devices. Sensors 2017, 17, 1382, doi:10.3390/s17061382. [CrossRef] [PubMed]

24. Miller, H.G.; Mork, P. From Data to Decisions: A Value Chain for Big Data. IT Profess. 2013, 15, 57–59. [CrossRef]
25. Perales, M.; Pedraza, L.; Moreno-Ger, P. Work-In-Progress: Improving Online Higher Education with Virtual

and Remote Labs. In Proceedings of the 2019 IEEE Global Engineering Education Conference (EDUCON),
Dubai, UAE, 8–11 April 2019; pp. 1136–1139.

26. Dziabenko, O.; Orduña, P.; García-Zubia, J.; Angulo, I. Remote Laboratory in Education: WebLab-Deusto
Practice. In Proceedings of the E-Learn: World Conference on E-Learning in Corporate, Government,
Healthcare, and Higher Education, Montréal, QC, Canada, 9–12 October 2012; pp. 1445–1454.

27. University of Deusto and DeustoTech. WebLab-Deusto. 2018. Available online: http://weblab.deusto.es/
website (accessed on 1 May 2020).

28. Huertas Celdrán, A.; Garcia, F.; Saenz, J.; De La Torre, L.; Salzmann, C.; Gillet, D. Self-Organized Laboratories
for Smart Campus. IEEE Trans. Learn. Technol. 2019. [CrossRef]

29. De La Torre, L.; Neustock, L.T.; Herring, G.; Chacon, J.; Garcia, F.; Hesselink, L. Automatic Generation and
Easy Deployment of Digitized Laboratories. IEEE Trans. Ind. Inform. 2020. [CrossRef]

30. Salzmann, C.; Govaerts, S.; Halimi, W.; Gillet, D. The Smart Device specification for remote labs.
In Proceedings of the 2015 12th International Conference on Remote Engineering and Virtual Instrumentation
(REV), Bangkok, Thailand, 25–27 February 2015; pp. 199–208. [CrossRef]

31. Salzmann, C.; Gillet, D. Smart device paradigm, Standardization for online labs. In Proceedings of the
2013 IEEE Global Engineering Education Conference (EDUCON), Berlin, Germany, 13–15 March 2013;
pp. 1217–1221. [CrossRef]

32. Halimi, W.; Salzmann, C.; Jamkojian, H.; Gillet, D. Enabling the Automatic Generation of User Interfaces
for Remote Laboratories. In Online Engineering & Internet of Things; Springer: Cham, Switzerland, 2018;
pp. 778–793._73. [CrossRef]

33. Huertas Celdrán, A.; Gil Pérez, M.; García Clemente, F.J.; Martínez Pérez, G. Automatic monitoring
management for 5G mobile networks. Procedia Comput. Sci. 2017, 110, 328–335. [CrossRef]

34. Salahuddin, M.A.; Al-Fuqaha, A.; Guizani, M.; Shuaib, K.; Sallabi, F. Softwarization of Internet of Things
Infrastructure for Secure and Smart Healthcare. Computer 2017, 50, 74–79. [CrossRef]

35. Muñoz, R.; Nadal, L.; Casellas, R.; Moreolo, M.S.; Vilalta, R.; Fabrega, J.M.; Martinez, R.; Mayoral, A.;
Vilchez, F.J. The ADRENALINE testbed: An SDN/NFV packet/optical transport network and edge/core
cloud platform for end-to-end 5G and IoT services. In Proceedings of the 2017 European Conference on
Networks and Communications (EuCNC), Oulu, Finland, 12–15 June 2017; pp. 1–5. [CrossRef]

36. Nguyen, V.G.; Brunstrom, A.; Grinnemo, K.J.; Taheri, J. SDN/NFV-Based Mobile Packet Core Network
Architectures: A Survey. IEEE Commun. Surv. Tutor. 2017, 19, 1567–1602. [CrossRef]

37. Ge, X.; Zhou, R.; Li, Q. 5G NFV-Based Tactile Internet for Mission-Critical IoT Services. IEEE Internet Things J.
2019. [CrossRef]

38. Qu, K.; Zhuang, W.; Ye, Q.; Shen, X.; Li, X.; Rao, J. Dynamic Flow Migration for Embedded Services in
SDN/NFV-Enabled 5G Core Networks. IEEE Trans. Commun. 2020, 68, 2394–2408. [CrossRef]

39. Huertas Celdrán, A.; Gil Pérez, M.; García Clemente, F.J.; Martínez Pérez, G. Sustainable securing of Medical
Cyber-Physical Systems for the healthcare of the future. Sustain. Comput. Inform. Syst. 2018, 19, 138–146.
doi:10.1016/j.suscom.2018.02.010. [CrossRef]

81

Sensors 2020, 20, 2923

40. Molina Zarca, A.; Bernabe, J.B.; Trapero, R.; Rivera, D.; Villalobos, J.; Skarmeta, A.; Bianchi, S.;
Zafeiropoulos, A.; Gouvas, P. Security Management Architecture for NFV/SDN-Aware IoT Systems.
IEEE Internet Things J. 2019, 6, 8005–8020. [CrossRef]

41. Long, Y.; Aleven, V. Educational game and intelligent tutoring system: A classroom study and comparative
design analysis. ACM Trans. Comput.-Hum. Interact. (TOCHI) 2017, 24, 1–27. [CrossRef]

42. Kangas, M.; Koskinen, A.; Krokfors, L. A qualitative literature review of educational games in the classroom:
the teacher’s pedagogical activities. Teach. Teach. 2017, 23, 451–470. [CrossRef]

43. Tissenbaum, M.; Slotta, J. Supporting classroom orchestration with real-time feedback: A role for teacher
dashboards and real-time agents. Int. J. Comput.-Support. Collab. Learn. 2019, 14, 325–351. [CrossRef]

44. Holstein, K.; McLaren, B.M.; Aleven, V. Intelligent tutors as teachers’ aides: Exploring teacher needs for
real-time analytics in blended classrooms. In Proceedings of the Seventh International Learning Analytics &
Knowledge Conference, Vancouver, BC, Cannada, 13–17 March 2017; pp. 257–266.

45. Holstein, K.; Hong, G.; Tegene, M.; McLaren, B.M.; Aleven, V. The classroom as a dashboard: Co-designing
wearable cognitive augmentation for K-12 teachers. In Proceedings of the 8th International Conference on
Learning Analytics and Knowledge, Sydney, Australia, 7–9 March 2018; pp. 79–88.

46. UNESCO Bangkok Office. School and Teaching Practices for Twenty-First Century Challenges: Lessons from
the Asia-Pacific Region—Regional Synthesis Report; Technical Report; UNESCO: Bangkok, Thailand, 2016;
Available online: https://unesdoc.unesco.org/ark:/48223/pf0000244022 (accessed on 1 May 2020).

47. Laal, M.; Laal, M.; Kermanshahi, Z.K. 21st century learning; learning in collaboration. Procedia-Soc. Behav. Sci.
2012, 47, 1696–1701. [CrossRef]

48. Martinez-Maldonado, R.; Kay, J.; Buckingham Shum, S.; Yacef, K. Collocated collaboration analytics: Principles
and dilemmas for mining multimodal interaction data. Hum.–Comput. Interact. 2019, 34, 1–50. [CrossRef]

49. Praharaj, S.; Scheffel, M.; Drachsler, H.; Specht, M. Multimodal analytics for real-time feedback in co-located
collaboration. In Proceedings of the European Conference on Technology Enhanced Learning, Leeds, UK,
3–6 September 2018; pp. 187–201.

50. Schneider, B.; Wallace, J.; Blikstein, P.; Pea, R. Preparing for future learning with a tangible user interface:
the case of neuroscience. IEEE Trans. Learn. Technol. 2013, 6, 117–129. [CrossRef]

51. Maldonado, R.M.; Kay, J.; Yacef, K.; Schwendimann, B. An interactive teacher’s dashboard for monitoring
groups in a multi-tabletop learning environment. In Proceedings of the International Conference on
Intelligent Tutoring Systems, Chania, Greece, 14–18 June 2012; pp. 482–492.

52. Novak, J.D.; Cañas, A.J. The Theory Underlying Concept Maps and How to Construct and Use Them; Technical
Report; Florida Institute for Human and Machine Cognition: Pensacola, FL, USA, 2008; Available online: http://
citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.100.8995&rep=rep1&type=pdf (accessed on 1 May 2020).

53. Fleck, R.; Rogers, Y.; Yuill, N.; Marshall, P.; Carr, A.; Rick, J.; Bonnett, V. Actions speak loudly with
words: Unpacking collaboration around the table. In Proceedings of the ACM International Conference on
Interactive Tabletops and Surfaces, Banff, Canada, 23–25 November 2009; pp. 189–196.

54. Kokotsaki, D.; Menzies, V.; Wiggins, A. Project-based learning: A review of the literature. Improv. Schools
2016, 19, 267–277. [CrossRef]

55. Topalli, D.; Cagiltay, N.E. Improving programming skills in engineering education through problem-based
game projects with Scratch. Comput. Educ. 2018, 120, 64–74. [CrossRef]

56. Marques, M.; Ochoa, S.F.; Bastarrica, M.C.; Gutierrez, F.J. Enhancing the student learning experience in
software engineering project courses. IEEE Trans. Educ. 2017, 61, 63–73. [CrossRef]

57. Martinez-Maldonado, R. “I Spent More Time with that Team” Making Spatial Pedagogy Visible Using
Positioning Sensors. In Proceedings of the 9th International Conference on Learning Analytics & Knowledge,
Tempe, AZ, USA, 4–8 March 2019; pp. 21–25.

58. Spikol, D.; Ruffaldi, E.; Cukurova, M. Using multimodal learning analytics to identify aspects of collaboration
in project-based learning. In Proceedings of the CSCL’17: The 12th International Conference on Computer
Supported Collaborative Learning, Philadelphia, PA, USA, 18–22 June 2017. [CrossRef]

59. Blikstein, P. Using learning analytics to assess students’ behavior in open-ended programming tasks.
In Proceedings of the 1st International Conference on Learning Analytics and Knowledge, Banff, AB, Canada,
27 February–1 March 2011; pp. 110–116.

60. Ahonen, L.; Cowley, B.U.; Hellas, A.; Puolamäki, K. Biosignals reflect pair-dynamics in collaborative work:
EDA and ECG study of pair-programming in a classroom environment. Sci. Rep. 2018, 8, 1–16. [CrossRef]

82

Sensors 2020, 20, 2923

61. Goldman, M.; Little, G.; Miller, R.C. Collabode: Collaborative coding in the browser. In Proceedings of
the 4th International Workshop on Cooperative And Human Aspects of Software Engineering, Waikiki, HI,
USA, 21 May 2011; pp. 65–68.

62. Prinsloo, P.; Slade, S. An elephant in the learning analytics room: The obligation to act. In Proceedings of the
Seventh International Learning Analytics & Knowledge Conference, Vancouver, BC, Canada, 13–17 March
2017; pp. 46–55.

63. Shankar, S.K.; Rodríguez-Triana, M.J.; Ruiz-Calleja, A.; Prieto, L.P.; Chejara, P.; Martínez-Monés, A.
Multimodal Data Value Chain (M-DVC): A Conceptual Tool to Support the Development of Multimodal
Learning Analytics Solutions. IEEE Rev. Iberoam. Tecnol. Aprendiz. 2020, 15, 113–122. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

83

sensors

Article

Teaching and Learning IoT Cybersecurity and
Vulnerability Assessment with Shodan through
Practical Use Cases

Tiago M. Fernández-Caramés 1,2,* and Paula Fraga-Lamas 1,2,*

1 Department of Computer Engineering, Faculty of Computer Science, Universidade da Coruña,
15071 A Coruña, Spain

2 Centro de investigación CITIC, Universidade da Coruña, 15071 A Coruña, Spain
* Correspondence: tiago.fernandez@udc.es (T.M.F.-C.); paula.fraga@udc.es (P.F.-L.).

Tel.: +34-981-167-000 (ext. 6051) (P.F.-L.)

Received: 28 April 2020; Accepted: 19 May 2020; Published: 27 May 2020

Abstract: Shodan is a search engine for exploring the Internet and thus finding connected devices.
Its main use is to provide a tool for cybersecurity researchers and developers to detect vulnerable
Internet-connected devices without scanning them directly. Due to its features, Shodan can be
used for performing cybersecurity audits on Internet of Things (IoT) systems and devices used in
applications that require to be connected to the Internet. The tool allows for detecting IoT device
vulnerabilities that are related to two common cybersecurity problems in IoT: the implementation
of weak security mechanisms and the lack of a proper security configuration. To tackle these issues,
this article describes how Shodan can be used to perform audits and thus detect potential IoT-device
vulnerabilities. For such a purpose, a use case-based methodology is proposed to teach students
and users to carry out such audits and then make more secure the detected exploitable IoT devices.
Moreover, this work details how to automate IoT-device vulnerability assessments through Shodan
scripts. Thus, this article provides an introductory practical guide to IoT cybersecurity assessment
and exploitation with Shodan.

Keywords: IoT; cybersecurity; Shodan; teaching methodology; use case based learning; security
audit; vulnerabilities; cyber-attacks; vulnerability assessment

1. Introduction

The Internet of Things (IoT) is a paradigm that involves the connection to the Internet of daily
objects, giving remote users and other devices the possibility of monitoring and interacting with them.
According to some reports, 75 billion IoT devices will be deployed by 2025 [1] for multiple areas like
smart appliances [2], smart agriculture [3], smart healthcare [4,5], or smart cites [6] (a summary of the
most relevant IoT application areas is shown in Figure 1). Part of such areas are considered as critical,
so their security is key to avoid potential damage.

Sensors 2020, 20, 3048; doi:10.3390/s20113048 www.mdpi.com/journal/sensors85

Sensors 2020, 20, 3048

Smart Tools

Smart Utilities

Smart Logistics

Smart Healthcare

Main IoT
Application

Areas

Smart Agriculture

Smart Buildingst B ildi

Smart Cities

Smart Campus

Smart Appliances

Smart Objects

Smart Mobility

Figure 1. Main Internet of Things (IoT) application areas.

Cybersecurity is a necessary requirement that has to be addressed during the design,
implementation and deployment of IoT devices [7,8]. One of the most challenging problems of current
IoT devices is that many of them are battery dependent and can be considered as resource-constrained
in terms of computational power and memory, which prevents them from implementing certain
security features that are common in traditional computers. For instance, public-key cryptography is
essential for providing high security for web browsing [9], email exchanges [10], or for storing medical
data [11], but the implementation of cryptosystems like Rivest–Shamir–Adleman (RSA) [12] or Elliptic
Curve Cryptography (ECC) [13] may not be possible or inefficient for resource-constrained IoT devices.
Moreover, such constrained devices may include bugs in their firmware, which in many cases is not
possible or easy to update periodically with code patches.

Weak credential security and the lack of basic authentication measures are also common in
IoT devices. For instance, such weaknesses were exploited by Mirai, which created a botnet that
obtained the administrative credentials of other IoT devices through brute force. Mirai-infected
devices, like webcams, Digital Video Recorders (DVRs), or routers, carried out in September 2016 one
of the largest Distributed Denial of Service (DDoS) attacks in history, with hundreds of thousands of
devices performing simultaneous requests [14]. In many cases, the mentioned weaknesses are related
to the fact that, often, product development does not consider security until the final development
stages, as an additional layer, instead of considering it as a design requirement.

Although there are a number of recent results of research projects that deal with IoT
cybersecurity [15,16], it is almost neglected in many university degrees that are related to the
development of IoT products (e.g., electrical engineering, computer science, and computer engineering),
so graduated students do not receive in most cases a dense training on IoT security. Moreover, such a
lack is also amplified by the difficulty of evaluating a broad range of real IoT devices, which would
provide hands-on experience to the students.

To tackle the aforementioned lack, this article includes the following contributions:

86

Sensors 2020, 20, 3048

• A practical use case-based teaching methodology is proposed. Such a methodology is based
on Shodan [17], an online tool that accelerates significantly the IoT device reconnaissance stage,
which is usually the most time and resource consuming stage on a cybersecurity assessment.

• This article also provides an introduction to the basics on IoT cybersecurity for future developers,
which can harness Shodan Application Programming Interfaces (APIs) to build tools to automate
IoT device vulnerability assessments.

• A theoretical and empirical approach to IoT security is provided to help educators to replicate
the teaching results obtained by the authors, which have successfully put them in practice in
seminars and master courses since 2018. For such a purpose, multiple practical use cases are
provided together with useful guidelines to prevent Shodan-based attacks.

The rest of this article is structured as follows. Section 2 analyzes the most recent and relevant
work on cybersecurity and IoT security teaching. Section 3 details the proposed teaching methodology.
Section 4 details the basics on IoT cybersecurity, including the most common security concerns and
the most popular IoT devices and architectures. In addition, Section 4 indicates the main IoT security
attacks and describes the typical IoT audit/attack methodology. Section 5 details the basics on Shodan,
and Section 6 suggests multiple use cases to put into practice the proposed teaching methodology.
Finally, Section 7 is devoted to the conclusions.

2. Related Work

2.1. Cybersecurity Teaching and Learning

Despite the increasing importance of cybersecurity, it is currently not taught extensively in many
universities around the world. Some universities have incorporated cybersecurity topics in their study
programs [18], but it is still difficult to determine which core competencies should be imparted and
then find experts to teach them [19].

Although most cybersecurity teaching still follows the traditional approach based on lectures
and labs, some universities have taken them to the cloud and thus imparted virtual cybersecurity
lectures on cloud-based platforms. For instance, the authors of [20] describe their experience when
teaching a cybersecurity course across two campuses via a virtual classroom. The authors use the
Amazon Web Services (AWS) cloud and remark as its main advantage that students perform the
exercises in a contained and secure environment without having to deal with cumbersome tasks to
set up and configure cybersecurity tools. A similar approach is detailed in [21], where the concept of
Cybersecurity Lab as a Service (CLaaS) is proposed to provide cybersecurity experiments to students
that can be anywhere and that only need an Internet connection and a device like a laptop, tablet, or a
smartphone to carry out the required tasks of the course.

Commercial software and hardware can be used for recreating real-world scenarios for
cybersecurity labs, but some researchers find them limited in different aspects and thus created
their own frameworks. For instance, in [22], a cybersecurity framework is proposed to develop
hands-on experiments rapidly, making use of two incentive models to engage the participants: a model
to encourage engineers to contribute with data and experiments and a model to encourage universities
to use the contributed data/experiments for education. A different approach is followed in [23],
where researchers from Northumbria University (United Kingdom) propose a low-cost and flexible
platform that is used as honeypot and that can be integrated with general purpose networks. Similarly,
in [24], a modular testbed for teaching cybersecurity in a simulated industrial environment is presented.
By using a flipped classroom methodology, students learn about threats associated with the industrial
control system domain, develop an educational game, and exercise their soft skills during multiple
public presentations.

Regarding IoT cybersecurity teaching, there are not many well documented success cases in the
literature. An example is detailed in [25,26], where a course in secure design is described. Such a course
is aimed at teaching students how to make user-centered cybersecure products that communicate

87

Sensors 2020, 20, 3048

threats in a better way and that emphasize key decisions to the user. The course consists of classroom
instruction, hands-on labs, and prototyping tasks where the students build a conceptual model of a
popular IoT smart home product.

Practical experimentation seems to be essential in IoT cybersecurity learning, as it allows the
students to retain the knowledge longer than when only traditional lectures are given [27]. For instance,
practical experiments carried out with the hardware platform Proxmark3 are key when teaching [28]
and evaluating [29] Radio Frequency Identification (RFID) cybersecurity.

Apart from hands-on assignments, other approaches to cybersecurity training include serious
games [30]. Examples range from cybersecurity competitions with penetration testing practices [31],
capture the flag games [32–34], online learning platforms [35], red versus blue teams [36],
or build-it/break-it/fix-it competitions [37]. In this regard, Hendrix et al. [38] investigate whether
serious games can be effective cybersecurity training tools. Although their results are generally positive,
the authors remark that the evaluation sample size was small and selected. Moreover, the studied
games were designed for a very short-term interaction (to be finished in one session), and those papers
that included an evaluation only considered immediate short-term impact. Therefore, although the
authors considered the positive early indications, the question of whether serious games are effective
at training was difficult to answer conclusively. As a result, they concluded that games could represent
specific case studies and facilitate case-based learning approaches.

Finally, it is worth mentioning that the vast majority of the IoT cybersecurity literature is aimed at
training/teaching university students, but it is also important to consider younger students, who are
progressively being taught to code from a younger age. This is why the authors of [39] analyzed
potential security and privacy issues that may arise when teaching children how to program the
BBC micro:bit platform, which can be used by kids to build their own IoT devices. Other authors
focused on promoting training all age groups and on further engaging female students [40]. In such a
paper, the authors emphasize the role of problem solving using the scientific method and experiential
learning activities.

In contrast to some of the previously mentioned IoT security initiatives, this article proposes to
make use of a tool that can be used remotely by any student with just a device able to run a web
browser and an Internet connection. Therefore, there is no need for expensive hardware or cloud
infrastructure (in the imparted courses, students with smartphones were able to perform most of the
methodological steps as if they were using more powerful computers). In addition, although the
proposed methodology was specifically conceived for university students, it can be easily adapted to
high school teaching. However, it must be pointed out that the practical use cases described later in
Section 6 allow for detecting many real-world exposed IoT devices, including some related to industrial
or critical scenarios, which may lead to access voluntarily or involuntarily IoT devices and networks
that belong to third parties. Therefore, every student/researcher/teacher should check and follow the
respective law of his/her country and, of course, not cause any trouble or damage to the involved
IoT systems.

2.2. Shodan for IoT Cybersecurity

There are different web-based search engines for generic vulnerability scanning like Zmap [41] or
Censys [42], and other online tools like Thingful [43] that are used for gathering data from connected
IoT devices, but Shodan is currently the best suited for learning IoT cybersecurity due to the ease of
use of its web and API interfaces.

In the last years, several researchers made use of Shodan to evaluate the security of different
IoT devices. For instance, in [44], the authors used Shodan to detect devices like routers, firewalls,
or web cameras that made use of default credentials or simple passwords. Similarly, in [45], Shodan
was used together with other tools like Masscan and Nmap to detect vulnerable DSL routers, printers
and IoT devices affected by the Heartbleed bug. In the case of [46], webcams and connected smart
cameras were the ones analyzed: the researchers found thousands of them poorly configured or with

88

Sensors 2020, 20, 3048

no security. Other researchers corroborated such results and concluded that webcams are in general
barely protected and can be used for cyberattacks [47]. Even more concerning are the results of the
work detailed in [48], where numerous vulnerable medical devices were detected using Shodan.

It is also worth mentioning the survey in [49], which emphasizes the need for hardening
IoT device security at the view of the ease of use of Shodan and the existence of tools like
ShoVAT [50], which automate vulnerability identification. Nessus [51] can also be used for vulnerability
identification together with Shodan [52]. Such an assessment can also be carried out through scripts,
like the authors of [53] did back in 2014 to detect thousands of exposed webcams, printers, and even
traffic control systems. Finally, it must be noted that IoT security analyses can be restricted to certain
physical locations or organizations. For instance, in [54], the authors scanned IoT vulnerabilities in
Jordan, finding numerous open webcams, industrial control systems and automated tank gauges.

3. Teaching Methodology

This article proposes to structure the learning/teaching process into four main parts:

• Introduction to the main IoT cybersecurity concepts. In this first part, the basics on IoT topics
like IoT communications architectures, common IoT devices, and attacks to IoT systems are
addressed.

• Introduction to the vulnerability assessment tool. This second part deals with the basics on the
use of Shodan.

• Practical use case-based analysis. A set of use cases is given to the students in order to apply to
them the proposed analysis methodology. At this point no knowledge of computer programming
is required, only a web browser with access to Shodan.

• IoT audit/attack automation. In this final part the students learn how to develop scripts to
automate the cybersecurity assessments that in the previous part they performed manually
through the Shodan web interface.

The first three of the previous four parts can be carried out by most students that have a minimum
knowledge of computers and IoT. Nonetheless, the methodology obtains better results with computer
science and electrical engineering students, who usually have a good previous knowledge on how IoT
devices and architectures work.

The previously mentioned structured content is typically imparted in an intensive six-week course.
Each week, one and a half hours are dedicated to theoretical lectures and another one and a half hours
to practical labs. In addition, the students carry out a guided final project on the security of a specific
device or field. Although the students choose freely the theme of the project, they are guided by the
course instructor to make the most out of the learning experience.

It is important to note that the proposed teaching structure is not lineal throughout the course:
most of the theoretical concepts are given during the first three weeks, whereas the last three weeks
are essentially focused on the labs and on the final project. Thus, the last three weeks are taught in a
flipped classroom format [55], where students are given additional content (e.g., links to IoT security
presentations from conferences like DEF CON [56], BlackHat [57], or CCC [58]) that are later discussed
during the face-to-face time.

At the end of the course, the students deliver three reports and the corresponding software for
the labs and for the final project. The grades are given as follows: 40% of the grade is related to an
exam on the theory, 30% is for the lab reports, and 30% is for the final project.

The following syllabus was proposed during the imparted courses:

1. Essential IoT cybersecurity Part I (theory, week 1).

• Introduction to IoT.
• Traditional IoT architectures.

89

Sensors 2020, 20, 3048

• Advanced IoT architectures.

2. Shodan basics (lab 1, week 1).

• Introduction to Shodan.
• How Shodan works internally.
• Shodan basic use.
• A first search with Shodan.

3. Essential IoT cybersecurity Part II (theory, week 2).

• Popular IoT devices.
• Main components of an IoT device.
• Main IoT-device security problems.

4. Practical IoT security analysis with Shodan (lab 2, week 2).

• Analysis methodology.
• Practical use cases.

– Webcams.
– Home automation systems.
– Home devices.

5. Essential IoT cybersecurity Part III (theory, week 3).

• Common IoT-device vulnerabilities and attacks.

6. Shodan query automation (lab 3, week 3).
7. Final project (weeks 4-6).

It is important to note that teachers should emphasize throughout the lectures the importance of
the legal dimension and possible consequences of putting Shodan and similar cybersecurity tools to
practice. The next sections of this article provide details on the main topics of the previous syllabus.

4. Essential IoT Cybersecurity

4.1. Main Concerns on IoT Security

As it was previously mentioned in the Introduction of this article, the security of many IoT
devices is conditioned by their computational simplicity and their dependence on batteries. The former
prevents developers from using security mechanisms that require relevant amounts of computing
power or memory, while the latter deters them from implementing complex cryptosystems that
can drain the battery fast. There are high-security energy-efficient mechanisms [59], but their
implementation is not very common in commercial IoT devices.

Static memory is also a common problem in IoT resource-constrained devices, as software bugs
and misbehaviors can be discovered after the deployment stage and thus require to patch the device
firmware. Unfortunately, many IoT devices (e.g., sensors and actuators) have not been designed to be
updated, like the ones based on Application-Specific Integrated Circuits (ASICs) or whose firmware is
stored on a Read-Only Memory (ROM). Other devices are difficult to update for most users, such as
the IoT devices that require to disassemble the device and plug a specific hardware programmer in.
Nonetheless, it must be mentioned that some IoT devices (usually the most computationally powerful,
like smart TVs) can be updated via Over-the-Air (OTA) updates, which allow for receiving periodic
firmware patches, dynamic configuration settings, or encryption keys from an IoT provider or a user.

Although most IoT users are essentially concerned by end-device security, IoT networks are
composed by other devices like gateways or remote clouds that are also vulnerable to attacks.

90

Sensors 2020, 20, 3048

As an example, Figure 2 shows, on the right, the main components of a traditional IoT cloud-based
architecture, which is currently the most popular among commercial IoT deployments. Such an
architecture consists of three layers. The layer at the bottom is the IoT-node layer, which is composed
by IoT devices that collect data from their embedded sensors and that receives remote commands
from the cloud. IoT nodes connect to the cloud through the gateway layer, which includes local
gateways (e.g., wireless or wired access points) and gateways deployed by Internet-Service Provider
(ISPs) to reach the Internet. Finally, at the top of the architecture is the cloud, which stores, processes,
and provides access to the collected data and allows for sending commands to the IoT devices.

Local Gateways

Gateway Gateway

Gateway

Cloud

Remote UsersRe Other IoT Networks

Third-Party
Services

Edge Layer

IoT Node Layer

Backbone Gateways

IoT Network B

Sensor Node
Smart

Agriculture

IoT Network A

Smart TV Home
Automation

IoT Network D

Smart
Appliance

Local Fog Gateway Local Fog Gateway Local Fog Gateway

Cloudlet

Local Gateways

Gateway

Gateway

Gateway Gateway

Gateway

Gateway

Gateway Layer

Backbone Gateways

IoT Network C

Smart TV Home
Automation

Cloud-Based ArchitectureEdge Computing-Based Architecture

Figure 2. Components of cloud-based and edge computing-based IoT architectures.

4.2. Traditional and Advanced IoT Architectures

Although cloud-based architectures are currently the most popular, they are related to certain
security problems that can be prevented by using other advanced architectures. For instance, one of
the problems of cloud-based architectures is that they concentrate most of the complex processing
and storage on the cloud. This means that the cloud becomes a point-of-failure and, if it has a fault
(e.g., due to a cyberattack, to periodic maintenance, or to a power outage), then the whole IoT system
stops working properly. Moreover, when a lot of devices perform requests simultaneously, the cloud
becomes a bottleneck that slows down the operation of the IoT network due to the excessive workload.

To tackle the previously mentioned issues, decentralized architectures based on edge computing
are useful. Figure 2 shows, on the left, the main components of an edge computing based architecture,
where three main layers can be distinguished: the IoT node layer, the cloud, and the edge computing
layer. The IoT node layer and the cloud operate in a similar way to a traditional cloud-based
architecture. The key layer is the edge layer, which provides edge computing services through
fog computing gateways and/or cloudlets [60–62]. Fog computing gateways are often devices like
Single-Board Computers (SBCs) that provide fast responses and some processing power to the IoT
devices in order to reduce latency and the amount of network traffic that is forwarded to the cloud.

91

Sensors 2020, 20, 3048

Cloudlets have similar objectives, but they are usually high-end computers that perform computing
intensive tasks locally. It is also important to note that edge computing nodes can communicate with
each other, thus being able to collaborate among them to carry out specific tasks.

There are also other alternative architectures for deploying IoT systems, like the ones based on
mist computing [63] or on blockchain [64], which are currently still being studied by industry and
academia even for future post-quantum scenarios [65].

4.3. Popular IoT Devices and Cyberattacks

There are many traditional devices that have been enhanced by enabling new features by adding
an Internet connection. This is case of TV sets, set-top boxes, home automation systems, intelligent light
bulbs, or smart power outlets. Most of them make use of a cloud-based architecture that centralizes
request processing in a remote cloud. In this way, if, for instance, a user wants to switch on an smart
power outlet through a smartphone app, the user request is first sent to the remote cloud and then
the cloud forwards it to the power outlet. This switch-on process is described step by step in Figure 3,
where it can be observed that a number of potential problems can arise when user-to-cloud and power
outlet-to-cloud communications security is either weak or neglected. Some examples are:

• An evil twin attack can be performed to create a fake local gateway that is able to route IoT device
communications to another remote server.

• DoS or DDoS attacks can be performed on the cloud, thus preventing users from sending
commands or receiving information from the IoT devices. Similar results may be achieved by
carrying out such Dos/DDoS attacks on the communications gateways, which are usually less
powerful and less prepared for supporting cyberattacks.

• Weakly encrypted or plain-text communications can be intercepted through sniffers or
Man-in-The-Middle (MiTM) attacks, which can gather data on the user or on certain IoT device
activities.

• Insecure IoT systems can also be affected by MiTM attacks that are able to modify commands or
IoT device responses so as to change the expected behavior of the system.

The impact of the previously mentioned cyberattacks is not only related to traditional homes, but
it is amplified due to the broad application fields where IoT is involved, like the deployments related
to healthcare [66], smart cities [67], smart infrastructure [68], smart campuses [69], intelligent transport
systems [70], or defense and public safety.

In addition, it is important to note that IoT devices like the smart power outlet included in Figure 3
are composed by three different components: hardware, software, and connectivity. Each of such
components can be subject to specific attacks and vulnerabilities:

• Hardware attacks. This kind of attacks is related to vulnerabilities that affect certain hardware
parts embedded into an IoT device. Examples of such attacks are:

– Physical attacks.
– Battery/power removal.
– Reverse engineering of the hardware.
– Denial of Service (DoS) attacks to drain batteries.

• Software attacks. These vulnerabilities are related to software bugs or to certain misbehavior that
lead to security problems. For instance, some software attacks of this type are:

– Software reverse engineering.
– Software vulnerabilities that have or have not been properly patched.
– Malicious software injection.
– Weak cryptographic implementations.

92

Sensors 2020, 20, 3048

• Connectivity attacks. As connectivity is key for implementing the IoT paradigm, IoT devices
are vulnerable to traditional attacks aimed at intercepting the exchanged data or at triggering
certain behaviors by impersonating an authorized third party. Thus, some of the most relevant
connectivity attacks are:

– DoS attacks.
– Jamming and radio interference.
– IoT node impersonation and Sybil attacks.
– Man-in-the-Middle attacks.
– Network protocol attacks.

Local
Gateway

Gateway

Gateway

Cloud

Remote UsersRe

Gateway Layer

IoT Node Layer

Backbone
Gateway

IoT Network

Smart
Power Outlet

1. A user requests to switch on
 smart power outlet.

2. The cloud forwards the request
 to the power outlet.

3. The power outlet receives
 the switch-on command.

4. The power outlet
 acknowledges the
 execution of the
 command.

5. The execution acknowledgement
 is received by the cloud.

6. The execution of the command
 is confirmed to the user.

Evil Twin Attacks
MiTM Attacks

DoS/DDoS Attacks
Network Protocol Attacks

Data Sniffing
MiTM Attacks

Jamming
Protocol Reverse Engineering

Physical Attacks
Battery/Power Removal

Reverse Engineering
DoS Attacks

IoT Node Impersonation
Sybil Attacks

Software Vulnerabilities
Malicious Software Injection

DoS/DDoS Attacks
Software Reverse Engineering

Software Vulnerabilities
Weak Administration Panel Security

Cloud Impersonation

Figure 3. Switching on an IoT-enabled power outlet using a cloud-based architecture.

4.4. IoT Audit/Attack Methodology

Figure 4 illustrates the main steps of the proposed IoT audit/attack methodology, which essentially
consists of four phases:

• Reconnaissance. In this phase the auditor/attacker gathers information on the IoT target.
The collected data may come from multiple sources (e.g., manufacturers, IoT providers,

93

Sensors 2020, 20, 3048

and hardware datasheets) and includes the traditional port scanning process in order to determine
which services are available.

• Audit/Attack plan. The auditor/attacker designs the steps involved in the devised audit/attack
strategy and selects the most appropriate tools to implement the plan. In many cases it is necessary
to develop specific tools to later exploit certain IoT device vulnerabilities.

• Access to the IoT system. The previously selected tools are used to access the IoT system.
Such tools exploit hardware, software, or connectivity vulnerabilities.

• Execution. After accessing the system, an attacker/auditor will put in practice the previously
planned strategy to take control of one or more IoT devices. It is common to make use of
certain software mechanisms to maintain the access to the IoT system for future intrusions (e.g.,
by opening a backdoor).

Figure 4. IoT device audit/attack methodology.

Among the previously mentioned phases, the first one (reconnaissance) is usually tedious and
requires to dedicate a significant amount of time and resources. However, as it is detailed in the next
section, thanks to Shodan, this stage can be noticeably shortened.

5. Shodan Basics

5.1. Aims and Inner Working

Shodan is actually a search engine that scans the Internet IP by IP looking for available services.
Such services are detected by parsing banners, which are essentially text that allow for identifying
login interfaces or certain service characteristics. An example of a banner is the typical Secure Shell
(SSH) login interface, which may provide details on the software of the SSH server or on the computer
where it is executed. Shodan indexes banner information and then allows for consulting it through a
web interface (shown in Figure 5) and programming APIs.

Underneath, Shodan makes use of crawlers that gather data continuously. There is a crawler
network that operates in different countries to prevent IP geo-blocking. Each crawler execute a really
simple script that carries out the following steps [71]:

1. A random IPv4 is generated.
2. A random port is selected among the ones supported by Shodan, which are usually related to

essential services.

94

Sensors 2020, 20, 3048

3. The crawler tries to connect to the select IP and port, and if a connection is established, it collects
the banner.

4. Go back to step 1.

Figure 5. Shodan main web page.

5.2. Basic Use and Web Interface

Shodan can be used as any web search engine, but its use and results differ depending on the user
role: there are non-registered users, free registered users, and paid registered users. Each type of user
can perform a different number of requests per month, scan a limited number of IPs, and monitor a
network with a different maximum of IPs. Differences also exist on the use of certain features, like the
application of certain filters or the provided support. Researchers, educators, and students that register
with an academic email address can receive a free upgrade (which needs to be requested by email) that
enables accessing enough functionality to teach/learn how to use Shodan, but that is usually limited
to not to use the accounts to develop commercial applications.

To illustrate the features of Shodan with an example, it can be for instance searched for “openwrt”.
OpenWrt [72] is actually an operating system based on Linux for embedded devices that can be
executed in IoT networks by devices like routers, SBCs, Network Attached Storage (NAS) servers,
WiFi extenders, or webcams. The previous Shodan search will lead to a screen like the one shown in
Figure 6, which indicates the most relevant sections of the result list page.

Most Relevant Data of the Result:
IP, Hostname, Organization,

Latest Update, Location HTTP Response

Total Number of Results

Results Classified by Country,
Service or Organization

Result List

Figure 6. Example of Shodan result list page.

95

Sensors 2020, 20, 3048

When the user clicks on Shodan Maps, the web interface shows a map like the one shown in
Figure 7, where the estimated location of the detected OpenWrt devices is depicted. Figure 8 shows the
extended information for one of the results obtained in the search. In this screen, on the left, for some
devices, detected vulnerabilities are shown. The collected raw data can be accessed by clicking on
“View Raw Data”.

Figure 7. Shodan Maps interface.

Estimated Location

Main Device Identification Data

Access Link
to the Raw Data

Detected
Open Ports

Collected Banner

Figure 8. Shodan individual result data page.

Among the multiple features included by Shodan, filters are one of the most useful when looking
for specific IoT devices. The following are some of the most relevant:

• country: it specifies the country of the detected devices through an ISO 3166-1 alfa-2 code.
For instance, if the previous Shodan search was meant to be limited to the United States,
the following query text should be indicated: “openwrt country:US”.

• city: it indicates the city of the devices to be located. For instance: “openwrt city:Barcelona”.
• geo: it allow for filtering the results depending on their geographical coordinates. If, for instance,

the previous results were aimed at obtaining the OpenWrt devices that are located next to Paris
city center, the Shodan search would be: “openwrt geo:48.860151,2.336200”. Moreover, this filter
can received a third parameter that indicates the maximum radius of the search. For example,

96

Sensors 2020, 20, 3048

the previous search can be modified to obtain the devices that are in a circle of one kilometer
around coordinates 48.860151, 2.336200: “openwrt geo:48.860151,2.336200,1”.

• net: it filters the results according to an IP range indicated in Classless Inter-Domain Routing
(CIDR) notation. An example would be: “openwrt net:37.13.0.0/16”.

• port: it allows for filtering the results depending on the detected open ports. For instance,
the following Shodan query would return the OpenWrt devices whose port 21 (FTP) is open:

“openwrt port:21”.
• org: it filters the results according to the organization they belong to. As an example, the following

query would indicate the OpenWrt devices that are managed by Amazon: “openwrt org:amazon”.

More filters and their parameters can be found in [73].

6. Practical IoT Security Use Case Analysis with Shodan

6.1. Use case Analysis Methodology

6.1.1. Teacher Perspective

From the teaching point of view, the following methodology would be recommended:

• As a first step, the teacher will give the students a list of Shodan searches (like some of the given
in Section 6.2).

• Basic analysis. The students analyze the results obtained by each query and determine which IoT
device they are looking for and what it is used for. This process usually involves multiple Google
searches to look for vendor information like device manuals/datasheets.

• Vulnerability assessment. The students study the vulnerabilities detected by Shodan, they look
for default credentials and for other potential cybersecurity problems.

As an example, the previously detailed methodology can be applied to a popular webcam software
for Microsoft Windows:

• First, the teacher would give the students the following Shodan query without giving further
details on the IoT device: webcamxp.

• Next, the students would introduce the query in Shodan and would find out that several
thousands of results (more than 5000 as of writing) are shown, most of which are related to
a webcam software. As Shodan currently returns a relevant number of honeypots, the students
would have to make use of filters to retrieve real webcams. For instance, a refined Shodan search
would be: product:"webcamXP httpd".

• After applying the appropriate filters, it is not difficult to find open webcams like the one shown
in Figure 9 on the right. It is also straightforward to find further information on the software by
looking for webcamxp manual through a web search engine.

• Finally, the students will look for security vulnerabilities of the IoT device. In this specific case,
the vast majority of the detected webcams neither make use of passwords or implement any kind
of access restrictions to control the webcam. The cybersecurity of the hosts that make use of each
webcam can be further analyzed with the help of Shodan (e.g., open ports or services), but such a
traditional analysis is in general out of the scope of a course focused on IoT cybersecurity.

6.1.2. IoT Researcher Perspective

• Determine the target IoT device.
• Build the Shodan search. This first step requires to determine the most appropriate query and its

filters in order to obtain the desired list of target IoT devices.

97

Sensors 2020, 20, 3048

• Look for additional information on the target IoT device. This process may involve looking for
information provided by the manufacturer or for the default credentials indicated in the user
manual.

• Vulnerability assessment. In this step it is necessary to analyze the vulnerabilities found
by Shodan, the security data provided by the manufacturer or already published Common
Vulnerability and Exposure (CVE) reports.

The WebcamXP example given in the previous subsection for the teacher perspective can be used
to illustrate how the proposed methodology would be applied by an IoT researcher:

• First, the researcher would set as an objective to find vulnerable webcams that make use of
WebcamXP software.

• Next, the researcher will design a first Shodan query (for instance, webcamxp) to retrieve the
maximum possible amount of IoT devices. Once a webcam is successfully detected (like the one
shown in Figure 9 on the right), the Shodan search can be easily refined to avoid collecting data
from honeypots and from other devices that include the word webcamxp in their banner. For such
a purpose, the researcher can analyze the raw information collected by Shodan and select certain
fields and values that are highly likely to remain constant for most of the targeted IoT devices.
For instance, filtering out by product (Shodan query: product:"webcamXP httpd") or by certain
fields of the HTTP header (Shodan query: "Pragma: no-cache Server: webcamXP") can be useful.

• At this point, the researcher may be interested in finding more information on the possibilities
that the webcam software can bring to a remote auditor/attacker. For such a purpose, further
information on the webcam software is available on the WebcamXP user manual, which can be
easily found through a web search engine.

• Although most of the WebcamXP webcams found through Shodan are completely open,
the researcher may be interested in exploring further security vulnerabilities of the detected
IoT devices. In such a case, CVE repositories like CVE Details allow for searching for
WebcamXP vulnerabilities [74], showing three CVE reports: CVE-2008-5862, CVE-2005-1190,
and CVE-2005-1189. Shodan academic users can make use of the mentioned CVE IDs
and Shodan’s vulnerability filter to obtain vulnerable devices directly (Shodan query:
vuln:CVE-2008-5862).

6.2. Practical use Cases

6.2.1. Webcams and Video Surveillance Systems

Webcams and video surveillance systems probably provide the most common examples on how
users lack of knowledge on IoT device security affects privacy and security around the globe: it is
currently very easy to find unprotected webcams and video surveillance systems that use their default
credentials. Examples of Shodan queries to find this kind of systems are:

• Linksys WVC80N Wireless Internet Camera (Shodan query: WVC80N). This is a webcam for
home monitoring that is more than 10 years old, but that still is serving in homes and industrial
installations. The problem is that many users either use the default credentials (admin/admin)
or do not use authentication at all, which causes a privacy problem (an example of screenshot
obtained from an open WVC80N webcam is shown in Figure 9 on the left).

• ExacqVision (Shodan query: “server: wfe”). This is a video surveillance system that allows
for watching and managing multiple webcams through a web interface. The problem is that
a significant number of users do not configure authentication or make use of weak/default
credentials.

• AXIS webcams (Shodan query: “port:80 has_screenshot:true”). As of writing, more than 3000
of these webcams can be found through Shodan, many of them requiring no credentials to
watch them.

98

Sensors 2020, 20, 3048

• AVTECH IP webcams (Shodan query: linux upnp avtech). More than 180,000 AVTECH devices can
be currently found by Shodan with the previous query, although many of them require credentials
to access the video stream. Although the latest firmware versions ask for a verification code,
there is a significant number of webcams that make use of the default credentials (admin/admin).

Figure 9. Screenshots of open WVC80N (left) and WebcamXP (right) webcams found with Shodan.

6.2.2. Home Automation Systems

The presence of home automation systems whose security is neglected is also significant.
The following are some examples of Shodan queries that will retrieve open or weakly protected
home automation system:

• JUNG KNX (Shodan query: Jung KNX). This is a home automation system whose smart control
panel can be accessed remotely with no need for credentials (an example of such a smart panel is
shown in Figure 10 on the left).

• Jeedom (Shodan query: Jeedom). It is a French open-source home automation system that usually
provides a web interface and, in many cases, an open Message-Queue Telemetry Transport
(MQTT) broker.

• Somfy alarm system (Shodan query: title:"Centrale" Pragma:"no-cache, no-store”). The previous
search allows for locating thousands of Somfy alarm systems, which provide a web interface for
remote user authentication.

• Insteon home automation system (Shodan query: title:"powered by insteon”). Most of the Insteon
installations located through the previous Shodan search require no authentication, so remote
users can interact directly with them (a example of an already hacked system is shown in the
screenshot in Figure 10 on the right).

Figure 10. Screenshots of open Jung KNX (left) and Insteon (right) home automation systems.

99

Sensors 2020, 20, 3048

• Creston control hub (Shodan query: Crestron PYNG-HUB). The web panel of this hub is used by
hundreds of users to monitor and control their home automation devices.

6.2.3. Home Devices

Like in the case of home automation systems, many home IoT devices are weakly secured or not
secured at all. Some examples of interesting Shodan queries are:

• iKettle (Shodan query: ikettle). It is a smart appliance to boil water remotely.
• WebIOPi (Shodan query: webiopi). It is a framework for creating and deploying IoT applications

with Raspberry Pi. Many installations are not password protected (an screenshot from one of
such installations that monitors environmental temperature is shown in Figure 11 on the left).

• Open Virtual Network Computing (VNC) systems (Shodan query: has_screenshot:true product:VNC
"authentication disabled"). The previous query allows for detecting VNC systems whose
authentication has been disabled.

• MQTT brokers (Shodan query: "MQTT Connection Code: 0" set –alarm). Although MQTT is very
popular among IoT developers, its security, in many cases, is neglected. Thus, the previous
Shodan query finds a significant number of open MQTT brokers.

• Yamaha AV receiver (Shodan query: "HTTP/1.1 406 Not Acceptable" "Server: AV_Receiver”). Many
Yamaha Internet-enabled AV receivers, which provide a remote web interface, have disabled their
authentication (a screenshot of one of them is shown in Figure 11 on the right).

Figure 11. Screenshots of open WebIOPi (left) and Yamaha (right) installations.

6.3. Automating Attacks

6.3.1. Shodan APIs

Shodan web interface provides a fast way to perform general evaluations on IoT devices or on
very specific use cases. However, to automate use case analysis, the APIs provided by Shodan are
more appropriate.

Currently, Shodan provides APIs for Python, Ruby, PHP, C#, Go, Haskell, Java, Node.js, Perl,
PowerShell, and Rust. Two specific APIs are defined: a Representational State Transfer (REST) API
and a streaming API. The REST API is aimed at interacting with Shodan through GET, POST, DELETE,
and PUT requests. The streaming API is able to exchange data that is embedded into JavaScript
Object Notation (JSON) files. Shodan also provides an additional REST API for exploits [75], which
normalizes exploit information after collecting it from multiple vulnerability data sources.

6.3.2. Teaching Shodan Scripting

In order to learn how to automate the manual steps described in Section 6.1, the following tasks
can be performed by students/learners:

100

Sensors 2020, 20, 3048

1. Install the code development environment. This usually requires importing Shodan search library.
2. Perform an initial Shodan query through the code to find a specific version of an IoT device.
3. Modify the code in (2) to print the IP and country of every obtained result.
4. Modify the code in (3) to print, for each detected IoT device that has vulnerabilities, the number

of detected exploits according to Shodan exploit REST API.

For instance, the following steps would be needed to perform the previous four tasks when
using Python:

1. First, it is necessary to install Python and then install the Shodan module with the command “pip
install shodan”.

2. An example of the script required for carrying out step 2 is shown in Listing 1 (between lines 1
and 15). Note that, in order to execute the script, it is necessary to indicate the Shodan API key of
the developer. In the example, the indicated query can be changed to adapt to the user needs.

3. Listing 1 also shows the part of the script to perform step 3 (between lines 1 and 25). It is worth
noting that a 1 second delay is needed, as Shodan may limit the number of requests to one per
second.

4. Step 4 can be implemented in Python with the code below line 26 of Listing 1, which makes use
of the exploit REST API.

Listing 1: Example of Python script to automate Shodan queries.

1

2 import shodan

3 from time import sleep

4

5 SHODAN_API_KEY = "[INSERT HERE YOUR API KEY]"

6 api = shodan.Shodan(SHODAN_API_KEY)

7

8 query = ’webcamxp ’

9

10 try:

11

12 # Step 2 - Search using Shodan API

13 results = api.search(query)

14 print(’Total number of results: {}’.format(results[’total ’]))

15

16 for result in results[’matches ’]:

17

18 # Step 3 - Print IP and country for every obtained result

19 print(’IP: {}’.format(result[’ip_str ’])) # The IP for each result is printed

20 #print(result[’data ’]) # To print raw data for each result

21 host = api.host(result[’ip_str ’])

22 print(’- Country: {0}’.format(host.get(’country_name ’, ’n/a’)))

23 print(’’)

24 sleep (1) # A 1-second delay is necessary to respect Shodan API restrictions

25

26

27 # Step 4 - For each device IP, vulnerabilities and exploits are listed

28 try:

29 if str(host.get(’vulns ’)) != ’None’:

30 print(’-------------------- Exploit list --------------------’)

31 for vulnerability in host.get(’vulns’):

32 exploits = api.exploits.search(vulnerability)

33 sleep (1)

34 print(’Found {0} exploits for vulnerability "{1}" \n’.format(

35 exploits.get(’total’), vulnerability))

36

37 except shodan.APIError as erro:

38 print(

39 ’Error during exploit query: "{0}" ’.format(query))

40 print(’Shodan error: {0}’.format(erro))

41

42 except shodan.APIError as e:

43 print(’Error: {}’.format(e))

101

Sensors 2020, 20, 3048

6.4. Practical Teaching Results

During the last years, the previously described methodology was taught at the University of
A Coruña to students of the cybersecurity master program. Each student received three individual
Shodan queries and had to first apply the methodology described in Section 6.1.1, and then learned to
automate such queries through scripts, following the steps indicated in Section 6.3.2.

As a reference, the following paragraphs summarize the results obtained by the students of the
2020 class where 16 students (two women and fourteen men) took part in the course. Most of them
were recent graduates from computer science and electrical engineering programs with good coding
skills and basic knowledge on cybersecurity, but almost no previous experience on IoT. They also had
no previous practical experience with Shodan.

• Sixteen reports were delivered, with an average of 33 pages per report.
• Different Shodan queries were performed to target 16 specific IoT devices.
• On such 16 IoT devices, 675 non-patched vulnerabilities were found related to already published

CVEs.
• Roughly 320 IPs and their running services were analyzed making only use of the information

provided by Shodan (no additional scanning tools were used).
• Of the 320 analyzed IoT devices, 87 of them required no credentials to access private data or

to manage the device. Moreover, 21 of them made use of the default user or administrator
credentials. These results indicate that roughly one out of three analyzed IoT devices could be
easily accessed by a remote attacker.

As an example, Table 1 summarizes some of the most relevant results obtained by the students.
The following are the main conclusions that can be withdrawn from such results:

Table 1. Summary of the most relevant results obtained by the students of class 2020.

IoT Device
Mootool-Based

Webcams

Insteon
Smart Home

Controller

Somfy
Alarm
System

IoT
Proliphix

Thermostats

Cannon
VB-M600
Network
Cameras

Twonky
Media
Server

#Shodan
Results 141 19 17,294 192 51 3846

#Analyzed
Devices 20 19 20 20 20 20

#Devices
without

Authentication
20 15 - - 9 20

#Devices with
Default

Credentials
- - 2 3 4 -

#Devices
Affected by

CVEs
4 - - - 1 -

#Detected
CVEs 66 - - - 359 -

1. Mootools-based webcams:

• Shodan query: ("webcam 7" OR "webcamXP") http.component:“mootools” -401
• Relevant results:

– All the 20 analyzed webcams required no credentials to view their content.
– Seven of the webcams were used as surveillance cameras in industrial scenarios, while

4 of them were aimed at watching road traffic in specific areas. In addition, 5 of the

102

Sensors 2020, 20, 3048

cameras were used as home surveillance systems. The other 4 webcams were used for
monitoring public spaces.

– Of the 20 analyzed systems, four of them made use of services and software affected by
66 vulnerabilities that were already documented as CVEs.

2. Insteon smart home controller:

• Shodan query: title:"powered by insteon"
• Relevant results:

– Only 19 results were obtained. Most of the IPs were located in Taiwan and were
deployed in homes.

– Of the 19 IoT systems, 15 of them required no credentials to interact with the smart
home system.

3. Somfy alarm system:

• Shodan query: title:"Centrale" Pragma: "no-cache, no-store"
• Relevant results:

– Several of the analyzed systems made use of the default credentials, so attackers could
access the alarm system and enable or disable it at will.

4. IoT Proliphix thermostats:

• Shodan query: title:"Status & Control"
• Relevant results:

– A relevant number of the studied IoT systems either used the default user or
administration credentials, so a remote attacker could easily watch and manipulate the
thermostat.

5. Tesla PowerPack system:

• Shodan query: http.title:"Tesla PowerPack System"
• Relevant results:

– Some of the analyzed IoT systems could be accessed as administrator by making use
of the default credentials. However, most of the systems found through Shodan were
actually classified as honeypots.

6. Cannon VB-M600 network camera system:

• Shodan query: title:"Network Camera VB-M600" "200 ok server: vb"
• Relevant results:

– Of the 20 analyzed systems, nine of them could be accessed with no credentials,
while four made of use of the default credentials.

– The software used by these systems were affected by 359 vulnerabilities documented
through already published CVEs. Such vulnerabilities were essentially related to the
use of outdated versions of Linux and Apache Tomcat.

7. Twonky media server:

• Shodan query: "product:TwonkyMedia UPnP" http.title:"Twonky Server"
• Relevant results:

103

Sensors 2020, 20, 3048

– All the devices found through the indicated Shodan query were completely open, so
remote attackers can access the shared media content.

Given these results, as one of the students indicated in his report, “it can be concluded that
Shodan is a really powerful cybersecurity tool that is able to expose IoT device misconfigurations and
vulnerabilities in an easy and fast way; the possibility of using Shodan for automatic IoT vulnerability
assessments emphasizes the importance of taking care of security during IoT device installation and
configuration, and makes it necessary to patch their software periodically”.

Finally, it is worth mentioning that, during the course, there were no major problems respect to
the use of Shodan. The only relevant issues arose in relation to the following two topics:

• API-based development. During the development of the scripts the students had problems when
dealing with the Python wrapper API, as part of it was not properly documented.

• Critical infrastructure vulnerabilities. In case of finding vulnerabilities that affected critical
infrastructures, the students were told to warn the instructor so that he/she could take
the appropriate measures (e.g., to warn the company/entity through the university on the
encountered problems). For instance, during the course, the mentioned procedure was used by
a student that found VoIP communications system of a military company that used the default
credentials.

6.5. Preventing Shodan-Based Attacks on IoT Devices: Best Practices

The previous sections show that Shodan is a really powerful tool for performing IoT cybersecurity
audits and attacks. In the case of the former, an auditor can give the following recommendations to
prevent the audited IoT devices from being attacked through Shodan:

• Check your IP or your organization IP range to determine whether your IoT devices are already
indexed by Shodan. If they are indexed, verify their connectivity needs, trying to minimize the
number of them that accept incoming connections.

• Minimize the number of open ports. In addition, make use of firewalls to prevent potential
intrusions.

• Always try to use HTTPS instead of HTTP. This may be difficult to implement in certain
resource-constrained IoT devices. In addition, please note that it is very complex to have an
individual (no self-signed) certificate for each IoT device, so try to implement additional security
layers.

• Whenever possible, try to use a Virtual Private Network (VPN).
• Whenever possible, modify your IoT device banners and the exposed ports to make the

reconnaissance stage difficult for potential attackers. For instance, move the necessary ports to a
range that is not scanned by Shodan crawlers.

• Block Shodan crawler IPs to prevent IoT devices from being indexed. A good list of such crawler
IPs can be found in [76].

• In case the IoT device cannot be protected from being indexed by Shodan:

– Never use default or really common credentials (e.g., “admin”, “1234”).
– Try to use long usernames and passwords to avoid brute-force attacks.
– Update credentials periodically.
– Keep IoT device firmware updated.

6.6. Additional Course Topics

This article described the content, structure, and methodology applied to a 6-week course that,
due to time restrictions, is focused on detecting vulnerable IoT devices that are publicly exposed on

104

Sensors 2020, 20, 3048

the Internet. However, a complete IoT cybersecurity program should extend the proposed syllabus
and address other relevant topics, like:

• Ethical hacking. Students should learn about the implications and differences among black hat,
white hat, and gray hat hackers, which can make use of Shodan with different purposes.

• Legality. Cybersecurity researchers and students should be fully aware of the legal dimension
and potential consequences of making use of Shodan and other security tools.

• Defense against IoT attacks. Although Section 6.5 enumerates different recommendations to
protect IoT devices against Shodan-based attacks, IoT devices are exposed to many more attacks,
like the ones indicated in Section 4.3. Therefore, it is necessary to teach students how to protect
IoT devices from physical attacks, software/hardware reverse engineering, malicious firmware
updates, or rogue wireless access points.

• Critical infrastructure cybersecurity. IoT devices can be deployed in environments whose
infrastructure can be considered as strategical or critical due to the impact that cyberattacks can
have on them. For instance, cyberattacks on certain industries (e.g., chemical plants and power
plants) or infrastructure (e.g., bridges, dams, ports and railways) can have terrible consequences,
so students need to be trained on the specific characteristics of such environments and on the
most commonly used monitoring devices (e.g., Programmable Logic Controllers (PLCs) and
Industrial Control Systems (ICSs)).

• Mobile device security. A mobile device, like a wearable, a smartphone, or a tablet, can be
considered as a specific type of IoT device that provides users with certain communications
services and monitoring capabilities (e.g., by making use of embedded sensors like accelerometers,
gyroscopes, and GPS). For instance, unfortunately, Shodan can find thousands of open Android
devices (Shodan query: port:5555 debug) that require no credentials for accessing the internal
memory, for installing new applications, or for taking pictures with the embedded camera.
Therefore, students should understand how the most popular mobile operating systems and
devices work, and how they can be protected against cyberattacks.

• Platform security. Robot, cobot, Unmanned Aerial Vehicle (UAVs), or Augmented/Mixed/Virtual
(AR/MR/VR) platforms can be considered as IoT platforms that make use of sensors, actuators,
and communications subsystems that are expected to suffer from cybersecurity attacks. Students
should understand how to keep information protected, defend against unauthorized use,
tampering, or even physical damage.

7. Conclusions

IoT cybersecurity is a topic whose importance has been growing in the last years, but that has
not been extensively covered in IT university programs. To ease IoT cybersecurity teaching, this
article proposed a practical use case-based methodology that relies on Shodan, a search engine for
exploring the Internet that is able to find connected IoT devices. Thus, students only need a web
browser and Internet connectivity to carry out practical cybersecurity audits and analyses. Multiple
practical examples have been given to discover IoT-enabled devices like webcams or home automation
systems, which usually make use of default credentials and/or of weak authentication mechanisms.
In addition, the article showed examples of scripts that allow for using Shodan to automate IoT-device
vulnerability assessments. Thanks to the previous contributions, this article provided teachers and
developers the basics for creating future Shodan-based IoT cybersecurity courses and vulnerability
assessment software.

Author Contributions: T.M.F.-C. and P.F.-L. contributed equally to the involved analysis and writing. T.M.F.-C.
conceived the article and performed the data collection. All authors have read and agreed to the published version
of the manuscript.

105

Sensors 2020, 20, 3048

Funding: This work has been funded by the Xunta de Galicia (ED431G2019/01), the Agencia Estatal de
Investigación of Spain (TEC2016-75067-C4-1-R, RED2018-102668-T, PID2019-104958RB-C42) and ERDF funds of
the EU (AEI/FEDER, UE).

Conflicts of Interest: The author declares no conflicts of interest.

References

1. HIS, Internet of Things (IoT) Connected Devices Installed Base Worldwide from 2015 to 2025
(In Billions). Available online: https://www.statista.com/statistics/471264/iot-number-of-connected-
devices-worldwide/ (accessed on 9 April 2020).

2. Blanco-Novoa, O.; Fernández-Caramés, T.M.; Fraga-Lamas, P.; Castedo, L. A Cost-Effective IoT System for
Monitoring Indoor Radon Gas Concentration. Sensors 2018, 18, 2198. [CrossRef] [PubMed]

3. Ayaz, M.; Ammad-Uddin, M.; Sharif, Z.; Mansour, A.; Aggoune, E. M. Internet-of-Things (IoT)-Based Smart
Agriculture: Toward Making the Fields Talk. IEEE Access 2019, 7, 129551–129583. [CrossRef]

4. Fernández-Caramés, T.M.; Froiz-Míguez, I.; Blanco-Novoa, O.; Fraga-Lamas, P. Enabling the Internet of
Mobile Crowdsourcing Health Things: A Mobile Fog Computing, Blockchain and IoT Based Continuous
Glucose Monitoring System for Diabetes Mellitus Research and Care. Sensors 2019, 19, 3319.

5. Alam, M. M.; Malik, H.; Khan, M. I.; Pardy, T.; Kuusik, A.; Le Moullec, Y. A Survey on the Roles of
Communication Technologies in IoT-Based Personalized Healthcare Applications. IEEE Access 2018,
6, 36611–36631. [CrossRef]

6. Fraga-Lamas, P.; Celaya-Echarri, M.; Lopez-Iturri, P.; Castedo, L.; Azpilicueta, L.; Aguirre, E.; Suárez-Albela,
M.; Falcone, F.; Fernández-Caramés, T.M. Design and Experimental Validation of a LoRaWAN Fog
Computing Based Architecture for IoT Enabled Smart Campus Applications. Sensors 2019, 19, 3287.

7. Lu, Y.; Xu, L.D. Internet of Things (IoT) Cybersecurity Research: A Review of Current Research Topics. IEEE
Int. Things . 2019, 6, 2103–2115.

8. Augusto-Gonzalez, J.; Collen, A.; Evangelatos, S.; Anagnostopoulos, M.; Spathoulas, G.; Giannoutakis, K. M.;
Votis, K.; Tzovaras, D.; Genge, B.; Gelenbe, E.; Nijdam, N. A. From internet of threats to internet of things: A
cyber security architecture for smart homes. In Proceedings of the 2019 IEEE 24th International Workshop
on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), Limassol,
Cyprus, 11–13 September 2019; pp. 1–6.

9. IETF, RFC 8446: The Transport Layer Security (TLS) Protocol Version 1.3. Aug. 2018. Available online:
https://tools.ietf.org/html/rfc8446 (accessed on 9 April 2020).

10. IETF, RFC 3156: MIME security with OpenPGP. Aug. 2000. Available online: https://tools.ietf.org/html/
rfc3156 (accessed on 9 April 2020).

11. Tseng, C.H.; Wang, S.H.; Tsaur, W.J. Hierarchical and Dynamic Elliptic Curve Cryptosystem Based
Self-Certified Public Key Scheme for Medical Data Protection. IEEE Trans. Reliab. 2015, 64, 1078–1085.
[CrossRef]

12. Rivest, R. L.; Shamir, A.; Adleman, L. M. A method for obtaining digital signatures and public-key
cryptosystems. Commun. ACM 1978, 21, 120–126.

13. Koblitz, N. Elliptic curve cryptosystems. Math. Comput. 1987, 48, 203–209.
14. Kolias, C.; Kambourakis, G.; Stavrou, A.; Voas, J. DDoS in the IoT: Mirai and Other Botnets. Computer 2017,

50, 80–84. [CrossRef]
15. Ghavami, N.; Volkamer, M.; Haller, P.; Sánchez, A.; Dimas, M. GHOST-Safe-Guarding Home IoT

Environments with Personalised Real-Time Risk Control. In Security in Computer and Information Sciences:
First International ISCIS Security Workshop 2018; Euro-CYBERSEC; Springer: London, UK, 2018.

16. Meneghello, F.; Calore, M.; Zucchetto, D.; Polese, M.; Zanella, A. IoT: Internet of Threats? A Survey of
Practical Security Vulnerabilities in Real IoT Devices. IEEE Int. Things J. 2019, 6, 8182–8201.

17. Shodan Official Web Page. Available online: https://www.shodan.io (accessed on 9 April 2020).
18. Hölbl, M.; Welzer, T. Experience with Teaching Cybersecurity. In Proceedings of the 27th EAEEIE Annual

Conference, Grenoble, France, 7–9 June 2017; pp. 1–4.
19. Parekh, G.; DeLatte, D.; Herman, G.L.; Oliva, L.; Phatak, D.; Scheponik, T.; Sherman, A.T. Identifying Core

Concepts of Cybersecurity: Results of Two Delphi Processes. IEEE Trans. Educ. 2018, 61, 11–20. [CrossRef]

106

Sensors 2020, 20, 3048

20. Salah, K.; Hammoud, M.; Zeadally, S. Teaching Cybersecurity Using the Cloud. IEEE Trans. Learn. Technol.
2015, 8, 383–392. [CrossRef]

21. Tunc, C.; Hariri, S.; De La Peña Montero, F.; Fargo, F.; Satam, P.; Al-Nashif, Y. Teaching and Training
Cybersecurity as a Cloud Service. In Proceedings of the 2015 International Conference on Cloud and
Autonomic Computing, Boston, MA, USA, 21–25 September 2015; pp. 302–308.

22. Wang, L.; Tian, Z.; Gu, Z.; Lu, H. Crowdsourcing Approach for Developing Hands-On Experiments in
Cybersecurity Education. IEEE Access 2019, 7, 169066–169072.

23. Eliot, N.; Kendall, D.; Brockway, M. A Flexible Laboratory Environment Supporting Honeypot Deployment
for Teaching Real-World Cybersecurity Skills. IEEE Access 2018, 6, 34884–34895. [CrossRef]

24. Čeleda, P.; Vykopal, J.; Švábenský, V.; Slavíček, K. KYPO4INDUSTRY: A Testbed for Teaching Cybersecurity
of Industrial Control Systems. In Proceedings of the 51st ACM Technical Symposium on Computer Science
Education, Portland, Oregon, USA, 11–14 March 2020; pp. 1026–1032.

25. Sharevski, F.; Trowbridge, A.; Westbrook, J. Novel approach for cybersecurity workforce development:
A course in secure design. In Proceedings of the IEEE Integrated STEM Education Conference (ISEC),
Princeton, NJ, USA, 11 March 2018; pp. 175–180.

26. Sharevski, F.; Treebridge, P.; Westbrook, J. Experiential User-Centered Security in a Classroom: Secure
Design for IoT. IEEE Commun. Mag. 2019, 57, 48–53. [CrossRef]

27. Ban, Y.; Okamura, K.; Kaneko, K. Effectiveness of Experiential Learning for Keeping Knowledge Retention
in IoT Security Education. In Proceedings of the 6th IIAI International Congress on Advanced Applied
Informatics, Hamamatsu, Japan, 9–13 July 2017; 699–704.

28. Figueroa, S.; Carías, J. F.; Añorga, J.; Arrizabalaga, S.; Hernantes, J. A RFID-based IoT Cybersecurity
Lab in Telecommunications Engineering. In Proceedings of Technologies Applied to Electronics Teaching
Conference, La Laguna, Spain, 20-22 June 2018, pp. 1–8.

29. Fernández-Caramés, T.M.; Fraga-Lamas, P.; Suárez-Albela, M.; Castedo, L. A methodology for evaluating
security in commercial RFID systems. In Radio Frequency Identification; IntechOpen: London, UK, 2017.
[CrossRef]

30. Topham, L.; Kifayat, K.; Younis, Y. A.; Shi, Q.; Askwith, B. Cyber security teaching and learning laboratories:
A survey. Inf. Secur. 2016, 35, 51. [CrossRef]

31. Bock, K.; Hughey, G.; Levin, D. King of the Hill: A Novel Cybersecurity Competition for Teaching
Penetration Testing. In Proceedings of the 2018 USENIX Workshop on Advances in Security Education (ASE
18), Baltimore, MD, USA, 13 August 2018; pp. 1–9.

32. DEF CON 27 Capture the Flag. Available online: https://www.defcon.org/html/defcon-27/dc-27-ctf.html
(accessed on 9 April 2020).

33. Ford, V.; Siraj, A.; Haynes, A.; Brown, E. Capture the flag unplugged: an offline cyber competition.
In Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science Education, Seattle
Washington, USA, 8–11 March 2017; pp. 225–230.

34. Chapman, P.; Burket, J.; Brumley, D. PicoCTF: A Game- Based Computer Security Competition for High
School Students. In Proceedings of the 2014 USENIX Summit on Gaming, Games, and Gamification in
Security Education (3GSE 14), USENIX Association, San Diego, CA, USA, 18 August 2014; pp. 1–10.

35. Root Me. The Fast, Easy, and Affordable Way to Train Your Hacking Skills. Challenge Your Hacking Skills.
Available online: https://www.root-me.org/?lang=en (accessed on 9 April 2020).

36. Vykopal, J.; Vizvary, M.; Oslejsek, R.; Celeda, P.; Tovarnak, D. Lessons Learned From Complex Hands-on
Defence Exercises in a Cyber Range. In Proceedings of the 2017 IEEE Frontiers in Education Conference
(FIE), Indianapolis, IN, USA, 18–21 October 2017; pp. 1–8.

37. Ruef, A.; Hicks, M.; Parker, J.; Levin, D.; Mazurek, M.L.; Mardziel, P. Build it, break it, fix it: Contesting secure
development. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security, Vienna Austria, 24–28 October 2016; pp. 690–703.

38. Hendrix, M.; Al-Sherbaz, A.; Bloom, V. Game based cyber security training: Are serious games suitable for
cyber security training?. Int. J. Serious Games 2016, 3, 1.

39. Knowles, B.; Finney, J.; Beck, S.; Devine, J. What children’s imagined uses of the BBC micro:bit tells us
about designing for their IoT privacy, security and safety. In Proceedings of Living in the Internet of Things:
Cybersecurity of the IoT, London, UK, 28-29 March 2018 March 2018; pp. 1–6.

107

Sensors 2020, 20, 3048

40. Liu, X; Murphy, D. Engaging females in cybersecurity: K through Gray. In Proceedings of the 2016 IEEE
Conference on Intelligence and Security Informatics (ISI), Tucson, AZ, USA, 17 November 2016; pp. 255–260.

41. Zmap Official Web Page. Available online: https://zmap.io (accessed on 9 April 2020)
42. Censys Official Web Page. Available online: https://censys.io (accessed on 9 April 2020)
43. Thingful Official Web Page. Available online: https://www.thingful.net (accessed on 9 April 2020)
44. Albataineh, A.; Alsmadi, I. IoT and the Risk of Internet Exposure: Risk Assessment Using Shodan Queries. In

Proceedings of the 2019 IEEE 20th International Symposium on "A World of Wireless, Mobile and Multimedia
Networks" (WoWMoM), Washington, DC, USA, 10–12 June 2019; pp. 1–5.

45. Markowsky, L.; Markowsky, G. Scanning for vulnerable devices in the Internet of Things. In Proceedings
of the 2015 IEEE 8th International Conference on Intelligent Data Acquisition and Advanced Computing
Systems: Technology and Applications (IDAACS), Warsaw, Poland, 24–26 September 2015; pp. 463-467.

46. Bugeja, J.; Jönsson, D.; Jacobsson, A. An Investigation of Vulnerabilities in Smart Connected Cameras.
In Proceedings of the 2018 IEEE International Conference on Pervasive Computing and Communications
Workshops (PerCom Workshops), Athens, Greece, 19 March 2018; pp. 537–542.

47. Vlajic, N.; Zhou, D. IoT as a Land of Opportunity for DDoS Hackers. Computer 2018, 51, 26–34.
48. McMahon, E.; Williams, R.; El, M.; Samtani, S.; Patton, M.; Chen,H. Assessing medical device vulnerabilities

on the Internet of Things. In Proceedings of the 2017 IEEE International Conference on Intelligence and
Security Informatics (ISI), Beijing, China, 22–24 July 2017; pp. 176–178.

49. Rae, J.S.; Chowdhury, M.M.; Jochen, M. Internet of Things Device Hardening Using Shodan.io and ShoVAT:
A Survey. In Proceedings of the 2019 IEEE International Conference on Electro Information Technology (EIT),
Brookings, SD, USA, 20–22 May 2019; pp. 379–385.

50. Genge, B.; Enăchescu, C. ShoVAT: Shodan-based vulnerability assessment tool for Internet-facing services.
Secur. Commun. Networks 2015, 9, 2696–2714. [CrossRef]

51. Nessus Official Web Page. Available online: https://www.tenable.com/products/nessus/nessus-
professional (accessed on 9 April 2020)

52. Williams, R.; McMahon, E.; Samtani, S.; Patton, M; Chen, H. Identifying vulnerabilities of consumer Internet
of Things (IoT) devices: A scalable approach. In Proceedings of the 2017 IEEE International Conference on
Intelligence and Security Informatics (ISI), Beijing, China, 22–24 July 2017; pp. 179–181.

53. Patton, M.; Gross, E.; Chinn, R.; Forbis, S.; Walker, L.; Chen, H. Uninvited Connections: A Study of
Vulnerable Devices on the Internet of Things (IoT). In Proceedings of the 2014 IEEE Joint Intelligence and
Security Informatics Conference, The Hague, Netherlands, 24–26 September 2014; pp. 232–235.

54. Al-Alami, H.; Hadi, A.; Al-Bahadili, H. Vulnerability scanning of IoT devices in Jordan using Shodan.
In Proceedings of the 2017 2nd International Conference on the Applications of Information Technology
in Developing Renewable Energy Processes & Systems (IT-DREPS), Amman, Jordan, 6–7 December 2017;
pp. 1–6.

55. Mason, G.S.; Shuman, T.R.; Cook, K.E. Comparing the Effectiveness of an Inverted Classroom to a Traditional
Classroom in an Upper-Division Engineering Course. IEEE Trans. Educ. 2013, 56,430–435.

56. DEF CON Conference Official Web Page. Available online: https://www.defcon.org (accessed on
9 April 2020)

57. Black Hat Conference Official Web Page. Available online: https://www.blackhat.com (accessed on
9 April 2020)

58. Chaos Computer Club Official Media Repository. Available online: https://media.ccc.de (accessed on
9 April 2020)

59. Suárez-Albela, M.; Fraga-Lamas, P.; Castedo, L.; Fernández-Caramés, T.M. Clock frequency impact on
the performance of high-security cryptographic cipher suites for energy-efficient resource-constrained IoT
devices. Sensors 2019, 19, 3868. [CrossRef] [PubMed]

60. Fraga-Lamas, P.; Lopez-Iturri, P.; Celaya-Echarri, M.; Blanco-Novoa, O.; Azpilicueta, L.; Varela-Barbeito, J.;
Falcone, F.; Fernández-Caramés, T. M. Design and Empirical Validation of a Bluetooth 5 Fog Computing
Based Industrial CPS Architecture for Intelligent Industry 4.0 Shipyard Workshops. IEEE Access 2020,
8, 45496–45511. [CrossRef]

61. Perera, C.; Qin, Y.; Estrella, J.C.; Reiff-Marganiec, S.; Vasilakos, A.V. Fog computing for sustainable smart
cities: A survey. ACM Comput. Surv. (CSUR) 2017, 50, 1-43. [CrossRef]

108

Sensors 2020, 20, 3048

62. Alturki, B.; Reiff-Marganiec, S.; Perera, C.; De, S. Exploring the Effectiveness of Service Decomposition in
Fog Computing Architecture for the Internet of Things. IEEE Trans. Sustain. Comput. 2019.

63. Suárez-Albela, M.; Fraga-Lamas, P.; Fernández-Caramés, T.M. A Practical Evaluation on RSA and ECC-Based
Cipher Suites for IoT High-Security Energy-Efficient Fog and Mist Computing Devices. Sensors 2018, 18, 3868.
[CrossRef]

64. Fernández-Caramés, T.M.; Fraga-Lamas, P. A Review on the Application of Blockchain for the Next
Generation of Cybersecure Industry 4.0 Smart Factories. IEEE Access 2019, 7, 45201–45218. [CrossRef]

65. Fernández-Caramés, T.M.; Fraga-Lamas, P. Towards post-quantum blockchain: A review on blockchain
cryptography resistant to quantum computing attacks. IEEE Access 2020, 8, 21091–21116. [CrossRef]

66. Strielkina, A.; Illiashenko, O.; Zhydenko, M.; Uzun,D. Cybersecurity of healthcare IoT-based systems:
Regulation and case-oriented assessment. In Proceedings of the 2018 IEEE 9th International Conference on
Dependable Systems, Services and Technologies (DESSERT), Kiev, Ukraine, 24–27 May 2018; pp. 67–73.

67. Alrashdi, I.; Alqazzaz, A.; Aloufi, E.; Alharthi, R.; Zohdy, M.; Ming, H. AD-IoT: Anomaly Detection of
IoT Cyberattacks in Smart City Using Machine Learning. In Proceedings of the 2019 IEEE 9th Annual
Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 7–9 January 2019;
pp. 305–310.

68. Trotter, L.; Harding, M.; Mikusz, M.; Davies, N. IoT-Enabled Highway Maintenance: Understanding
Emerging Cybersecurity Threats. IEEE Pervasive Comput. 2018, 17, 23–34.

69. Webb, J.; Hume, D. Campus IoT collaboration and governance using the NIST cybersecurity framework.
In Proceedings of the Living in the Internet of Things: Cybersecurity of the IoT, London, UK, 28–29 March
2018; pp. 1–7.

70. Frötscher, FA.; Monschiebl, B.; Drosou, A.; Gelenbe, E.; Reed, M. J.; Al-Naday, M. Improve cybersecurity
of C-ITS Road Side Infrastructure Installations: the SerIoT—Secure and Safe IoT approach. In Proceedings
of the 2019 IEEE International Conference on Connected Vehicles and Expo (ICCVE), Graz, Austria,
4–8 November 2019; pp. 1–5.

71. Matherly, J. Complete Guide to Shodan. Collect. Analyze. Visualize. Make Internet Intelligence Work for
You. Available online: https://www.amazon.com/Complete-Guide-Shodan-Visualize-Intelligence-ebook/
dp/B01CDIU880 (accessed on 9 April 2020).

72. OpenWrt Official Web Page. Available online: https://openwrt.org (accessed on 9 April 2020).
73. Javier Olmedo GitHub Repository for Shodan Filters. Available online: https://github.com/JavierOlmedo/

shodan-filters (accessed on 9 April 2020).
74. Vulnerabilities Collected by CVE Details for WebcamXP. Available online: https://www.cvedetails.com/

vulnerability-list/vendor_id-2917/Webcamxp.html (accessed on 17 May 2020).
75. Shodan Exploit API. Available online: https://developer.shodan.io/api/exploits/rest (accessed on

9 April 2020).
76. List of Shodan Crawler IPs. Available online: https://wiki.ipfire.org/configuration/firewall/blockshodan

(accessed on 9 April 2020).

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

109

MDPI
St. Alban-Anlage 66

4052 Basel
Switzerland

Tel. +41 61 683 77 34
Fax +41 61 302 89 18

www.mdpi.com

Sensors Editorial Office
E-mail: sensors@mdpi.com

www.mdpi.com/journal/sensors

MDPI
St. Alban-Anlage 66
4052 Basel
Switzerland

Tel: +41 61 683 77 34
Fax: +41 61 302 89 18

www.mdpi.com ISBN 978-3-0365-0523-7

	Blank Page

