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Foreword by Mami Mizutori

Reducing disaster risk and ensuring the safety of people and livelihoods are essential for the
advancement of sustainable development. Since the Third UN World Conference on Disaster
Risk Reduction which resulted in the Sendai Framework for Disaster Risk Reduction 2015–
2030, the United Nations system has been committed to supporting the improvement of global
understanding of risks toward risk-informed sustainable development. To that end, the United
Nations Office for Disaster Risk Reduction has developed the Global Assessment Report and
has established the Global Risk Assessment Framework providing tools for countries and
regions to better understand and manage risks.

As an amplifier of risk, climate change has brought about stronger storms, intensified
coastal flooding, higher temperatures, and longer droughts. As a result, assessing and pre-
dicting future risk has become more challenging, especially because of the creation of new
patterns of human settlement, land use, livelihoods, and migration in adapting to the emer-
gence of new risks. That is why I was pleased to learn that a research team, led by Beijing
Normal University with the support of science and technology partners in China, has gener-
ated an important body of work on global future risks across the population and economic
dimensions. Its projections provide valuable insights into the potential state of the world if
climate action and risk reduction are not accelerated.

I would like to congratulate the research team on creating this Atlas and thank them for
their hard work in the interest of global disaster risk reduction. I would also like to thank the
Government of the People’s Republic of China for supporting this work and for its own efforts
toward realizing the goals and targets of the Sendai Framework, especially around disaster risk
reduction planning and investing in science and technology.

I sincerely hope that this Atlas will enhance global understanding of current and future risk,
and will become a catalyst for action to avoid the creation of new risk while reducing existing
risk, and for strengthening resilience so that no one is left behind.

Mami Mizutori
Special Representative of the Secretary-General

for Disaster Risk Reduction, Head of United Nations
Office for Disaster Risk Reduction (UNDRR)
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Foreword by Dahe Qin

Climate extremes are an important source of losses from natural hazards and disasters. Global
climate change has significantly changed the frequency and intensity of climate extremes, and
has significantly increased the possibility of occurrence of disaster chains and disaster com-
pounds. An important content of the Sendai Framework for Disaster Risk Reduction and a
critical task for the realization of global sustainable development goals is to fully understand the
challenges that climate change brings to disaster risk reduction, and closely integrate disaster
risk reduction and climate change response. In 2012, the IPCC issued a special report on
“Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adapta-
tion”. It focused on the interaction between climate, environment, and human factors that can
lead to disasters and examined climate extreme events and disaster risk management at the
regional, national, and global scales. It provided guidance for global decision-makers to
respond actively to climate extreme events, manage disaster risks, and improve climate change
adaption. In 2018, the IPCC issued the “Special Report on Global Warming of 1.5 °C”. It
estimated the possible risks and impacts of global warming of 1.5 °C, and the potential benefits
and opportunities of controlling the temperature rise to 1.5 °C, aiming at providing scientific
evidence and motivation for decision-makers to limit global warming to within 1.5 °C.

In order to actively respond to the disaster risk challenges brought about by future climate
change, the “Outline of the National Medium- and Long-term Scientific and Technological
Development Plan (2006−2020)” released by the Chinese government in 2005 listed “Global
Change and Regional Response” as one of the top ten directions of basic research for the
country’s major strategic needs. In 2010, China launched the National Major Scientific
Research Program for global change research. In 2015, China organized a number of insti-
tutions to jointly compile the “China National Assessment Report on Risk Management and
Adaptation of Climate Extremes and Disasters”. The report comprehensively summarized the
research outcomes of multiple disciplines related to climate change adaptation and disaster risk
management, summarized experiences obtained from past responses to climate extremes and
disasters, and put forward policies and practical directions for the future. During the 13th
Five-Year Plan period, the National Key Research and Development Program established a set
of projects focusing on global change and response, under which a special research direction
was established to study the assessment and governance of global change risks.

In this context, the Disaster Risk Science Research Team of Beijing Normal University
joined forces with top domestic academic institutions such as the Institute of Atmospheric
Physics of the Chinese Academy of Sciences (CAS), the Institute of Geographic Sciences and
Natural Resources Research of the CAS, the Northwest Institute of Eco-Environmental
Resources of the CAS, and the National Disaster Reduction Research Center of the Ministry of
Emergency Management. Together, these institutions have carried out research on the for-
mation mechanism and assessment of global change risks of population and economic sys-
tems. The team has projected short-term (2030s) and medium-term (2050s) global-scale
climate change and population and economic system changes, developed a set of
scenario-based risk assessment models, and assessed the global change risks of population and
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economic systems at the global scale. Their results have enriched the scientific findings in the
field of global change risk research as a token of being pragmatic.

Taking the opportunity of publishing the atlas, we sincerely hope that our peer researchers
and practitioners further pay attention to the possible risks in population, economic systems,
and the ecological environment brought about by global changes, and further improve the
understanding of the risk formation mechanism and improve our models to more accurately
assess the risks of exposed population and economic systems. We call for risk-informed
integration of climate adaptation and disaster risk governance to promote the realization of
sustainable development goals.

Dahe Qin
Academician of the Chinese Academy of Sciences

Former Director of China Meteorological Administration

xii Foreword by Dahe Qin



Preface

Global climate change with anthropogenic warming has already posed a severe challenge to
the sustainable development of the world and human security. Changes in the frequency and
intensity of climate extremes, as well as changes in vulnerability and exposure, brought about
by population and economic growth together drive changes in global risks in the future. The
Intergovernmental Panel on Climate Change (IPCC) systematically studied the risks of global
climate change from the perspectives of climate change projection, impact and risk assess-
ment, and mitigation and adaptation, and specifically focused on the possible risks and impacts
of global warming of 1.5 °C. The potential benefits and opportunities of limiting global mean
surface temperature rise to within 1.5 °C above the pre-industrial level are estimated. From the
three related themes of the dynamic planet, global sustainable development, and the transition
to sustainable development, the Future Earth program focuses extensively on preventing
systemic risks caused by global changes. The Sendai Framework for Disaster Risk Reduction
2015−2030 closely links disaster risk reduction and climate change response to achieve win–
win results.

2019 marks the 30th anniversary of the joint implementation of the United Nation’s
International Decade for Natural Disaster Reduction. In 1989, in order to actively respond to
international actions and national needs of disaster prevention, Beijing Normal University
relied on the Cenozoic Paleogeography Laboratory to set up the Natural Disaster Monitoring
and Prevention Research Laboratory and began scientific research and disciplinary develop-
ment for disaster reduction. Over the past three decades, Beijing Normal University has carried
out comprehensive research on natural disaster risks from the disciplines such as Geography,
Remote Sensing Science and Technology, and Safety Science and Engineering. Research
outcomes were summarized in a series of atlases, including the Atlas of Natural Disaster in
China (Chinese and English editions) published in 1992, the Atlas of Natural Disaster System
of China (Chinese and English bilingual edition) published in 2003, the Atlas of Natural
Disaster Risk in China published in 2011 (Chinese and English bilingual editions), and the
World Atlas of Natural Disaster Risk published in 2015 to welcome the Third World Con-
ference on Disaster Risk Reduction. These atlases systematically present the patterns of spatial
and temporal differentiation of natural hazards, disasters, and risks in China and the world.

The future risk challenges brought about by global changes have attracted the attention
of the whole world. With the financial support from China’s 12th Five-Year Plan National
Major Scientific Research Plan “Global Change Environmental Risk Formation Mechanism
and Adaptation Research” (2012CB955400) and 13th Five-Year Plan National Key R&D
Program Project “Global Change Risk of Population and Economic Systems: Mechanisms and
Assessments” (2016YFA0602400), we have moved from a traditional risk study by using loss
uncertainty estimation based on historical data to a scenario-based global change risk study
integrating future climate and population and economic system changes. Our latest project
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carried out the projection of changes in the climate, and in the population and economic
system exposures (population, crops, industrial added value, road transportation system, and
gross domestic product) for the near (2030s, 2016−2035) and medium (2050s, 2046−2065)
future periods, under the combined scenarios of Representative Concentration Pathways
(RCP2.6, RCP4.5, and RCP8.5) and Shared Socioeconomic Pathways (SSP1, SSP2, and
SSP3), and at global-scale medium and high resolution (50 km � 50 km or 30 km � 30 km).
The project also conducted a risk assessment for population mortality, crop yield loss, and
economic loss. The most representative results have been collected to enter this atlas for
hard-copy publication, while more systematic and comprehensive results and multi-modal
uncertainty analysis results are publicly accessible via a digital map platform (http://gcr.grisk.
info).

Academic work behind this atlas was mainly conducted by the Disaster Risk Science
Research Team of Beijing Normal University, relying on the State Key Laboratory of Earth
Surface Processes and Resource Ecology, and the Key Laboratory of Environmental Change
and Natural Disaster of the Ministry of Education. Joint efforts have been devoted by the
Institute of Atmospheric Physics of the Chinese Academy of Sciences (CAS), the Institute of
Geographic Sciences and Natural Resources of the CAS, the Northwest Institute of
Eco-Environmental Resources of the CAS, and the National Disaster Reduction Center of the
Ministry of Emergency Management.

In the process of compiling this atlas, as well as in the development of disaster risk science
research of Beijing Normal University, we have received strong support from many institu-
tions at home and abroad. Here, we especially express our sincere gratitude to academic
institutions and other organizations that provided support in literature, data, and technology.
Domestic institutions and organizations include the National Climate Center of China Mete-
orological Administration, Xinjiang Institute of Ecology and Geography of the CAS, Institute
of Mountain Hazards and Environment of the CAS, Institute of Tibetan Plateau Research
of the CAS, School of Urban and Environmental Sciences of Peking University, Department
of Earth System Sciences of Tsinghua University, School of Geographical Sciences of East
China Normal University, School of Environmental and Geographical Sciences of Shanghai
Normal University, School of Geographical Sciences of Qinghai Normal University, Academy
of Plateau Science and Sustainability of the People’s Government of Qinghai Province and
Beijing Normal University, and Academy of Disaster Reduction and Emergency Management
of the Ministry of Emergency Management and Ministry of Education. Internationally
renowned universities and research institutions that have helped us include: University of
Maryland, Boston University, Columbia University, Old Dominion University, Nanyang
Technological University, International Institute for Applied Systems Analysis, University of
Leuven, Max Planck Institute of Biogeochemistry, University of Stuttgart, University of Trier,
Australian Commonwealth Scientific and Industrial Research Organization, Australian
National University, Kyoto University, the United Nations Office for Disaster Risk Reduction
(UNDRR), and UNDRR Asia-Pacific Technology and Academic Advisory Committee.

We express our sincere thanks to experts and scholars who generously offered valuable
advice and comments on the compilation of this atlas, including Academicians Dahe Qin, Jifan
Chou, Guanhua Xu, Guodong Cheng, Zhisheng An, Guoxiong Wu, Tandong Yao, Weijian
Zhou, Bojie Fu, Huadong Guo, Peng Cui, Fahu Chen, Chenghu Zhou, Jianbing Peng, and Jun
Chen, and Professors Hui Lin, Jianguo Wu, Quansheng Ge, Panmao Zhai, Shirong Liu, Peng
Gong, Yongjian Ding, Ye Qi, Dabang Jiang, Jianqi Sun, Qiuhong Tang, Changqing Song,
Baoyuan Liu, Qian Ye, Guoyi Han, Ming Wang, Qiang Zhang, and Jianjun Wu and Ms. Mami
Mizutori! We are also very grateful to Dr. Ying Li and Dr. Juan Du for their contribution to the
language editing and proofreading of the entire atlas.

We sincerely hope that the course of global climate change response and comprehensive
disaster risk reduction will attain greater achievements in the future and make greater con-
tributions to the building of a community with a shared future for mankind. Limited by the
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data and academic research and technical capacities of the research team, there are inevitably
inadequacies in this atlas. Readers are very welcome to offer their criticisms and help us to
make improvements.

Peijun Shi
State Key Laboratory of Earth

Surface Processes and Resource Ecology
Key Laboratory of Environmental Change and Natural Disaster, MOE

Academy of Disaster Reduction and Emergency Management
MOEM and MOE

Beijing Normal University
Beijing, China
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Mapping Environments of the World

Peijun Shi, Jing’ai Wang, Ying Wang, and Tian Liu

1 Introduction

A regional disaster system is essentially the product of the
interaction of humans and nature, which is composed of the
disaster-formative environment, exposure, hazard, and dis-
aster losses. It is a dynamic system with complex charac-
teristics on the surface of the earth (Fig. 1) (Shi 1991).

Disaster-formative environment (E): Broadly defined, it is
the natural and human environments. The regional differences
of disaster-formative environments not only have a profound
impact on the generation of hazards but also have an obvious
influence on the human casualties and property losses caused
by the hazards. Hazard (H): A hazard is a process or phe-
nomenon that may pose negative impacts on the economy,
society, and ecology, including both natural factors and
human factors that are associated with the natural ones.
Exposure (S): It covers humanity itself and lifeline systems,
production systems, cultural and social systems, and various
natural resources and ecological systems. Disaster loss and
effect (Ds): It includes casualties and psychological impacts,
direct and indirect economic losses, building (structural)
destruction, social network (non-structural) disorder, ecosys-
tem degradation, environmental pollution, resource damages,
and so on (Shi 1991, 1996, 2002, 2005, 2009, 2019).

2 Environments

The disaster-formative environment shown in this part
mainly refers to the natural physical environments, namely
geology, landform, climate, hydrology, vegetation, and soil.

Land elevation and slope of the terrain will affect the
spatial distribution of disasters. River systems will affect the
occurrence and scope of floods. Land cover and soil will
directly or indirectly influence the severity of floods and
droughts. In addition, climate zones directly or indirectly
reflect the distribution of extreme climatic events.

3 Maps Based on Reference Data

The maps based on reference data contain World Political
Map, Global Land Cover, Global Soil, Global Climate
Zones, Global River Systems, Global Digital Elevation
Models, Global Terrain Slope, and Global Satellite Image,
and their sources are shown in Table 1.

E

H

S

E

E: Disaster-formative environment, H: Hazard, 

S: Exposure, Ds: Loss and effects

Ds

Fig. 1 Disaster structural system

Authors: Peijun Shi, Jing’ai Wang, Ying Wang, Tian Liu.
Map Designers: Tian Liu, Yuanyuan Jing, Yelin Sun, Fanya Shi,
Jing’ai Wang, Ying Wang.
Language Editor: Ying Wang.

P. Shi (&) � J. Wang � Y. Wang
State Key Laboratory of Earth Surface Processes and Resource
Ecology, Beijing Normal University, Beijing, 100875, China
e-mail: spj@bnu.edu.cn
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Faculty of Geographical Science, Beijing Normal University,
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4 Maps

Table 1 Maps included in the
Environments section

Maps Source

World Political Map World Atlas of Natural Disaster Risk (2015)

Global Land Cover Copernicus Global Land Service https://lcviewer.vito.be/download

Global Soil Food and Agriculture Organization (FAO), United Nations Environment
Programme (UNEP), Land Degradation Assessment in Drylands (LDAD)
Project http://www.fao.org/geonetwork/srv/en/metadata.show?id=
37139&currTab=distribution

Global Climate Zones Food and Agriculture Organization (FAO) https://data.apps.fao.org/map/
catalog/srv/eng/catalog.search?uuid=7538cb25-7b2e-4030-8454-
7197a49af48a#/home

Global River Systems Food and Agriculture Organization (FAO) http://www.fao.org/geonetwork/
srv/en/main.home?uuid=9264483f-ca14-496b-aeae-fe1b8aebf520

Global Digital
Elevation Models

NOAA’s National Centers for Environmental Information (NCEI) https://data.
nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ngdc.mgg.dem:316

Global Terrain Slope Calculated based on Global Digital Elevation Models of the NOAA National
Centers for Environmental Information

Global Satellite Image National Aeronautics and Space Administration (NASA) http://visibleearth.
nasa.gov/view.php?id=57752

4 P. Shi et al.
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Mapping Temperature Changes

Xin Qi, Miaoni Gao, Tao Zhu, Siyu Li, Sicheng He, and Jing Yang

1 Introduction

Under the background of global warming, extreme temper-
ature events have significantly increased and hit various
parts of the globe (Alexander et al. 2006; Piao et al. 2010;
Fischer and Knutti 2014; Gao et al. 2019; Qi et al. 2019)—
for example, extreme high temperature occurred during the
summer of 2010 over Central Europe-Russia (Grumm 2011)
and the super cold surge swept across China at the end of
2020 (Zheng et al. 2021). As a serious worldwide challenge,
extreme temperature events bring severe damages to public
health, agricultural production, and socioeconomic systems
(Easterling et al. 2000; Sun et al. 2018; Wang et al. 2019).
Therefore, assessing future global temperature changes is
crucial for tackling climate change and disaster mitigation
and prevention.

Several studies have attempted to project future changes
in temperature at the global scale or with a focus on certain
regions through the coarse global climate models (GCMs) or
high-resolution regional climate models (Zobel et al. 2017;

Dosio et al. 2018; Nangombe et al. 2018). However, the
global temperature changes including the mean state, vari-
ance, and extreme temperature in the future based on
fine-resolution multiple GCM outputs are rarely reported in
the previous literature. A high-resolution (0.25° � 0.25°)
dataset named NASA Earth Exchange Global Daily Down-
scaled Projections (NEX-GDDP) has been released
(Thrasher et al. 2012, 2013), which enables the temperature
assessment from a global perspective. NEX-GDDP is a
statistical downscaling dataset using the bias correction and
spatial disaggregation method based on the simulations of
the GCMs from the Coupled Model Intercomparison Project
Phase 5 (CMIP5) and historical observation (Wood et al.
2004; Maurer et al. 2010). Compared with the original GCM
outputs, the historical fidelity of climatology and extreme
temperature derived from the downscaled NEX-GDDP has
been improved (Bao and Wen 2017; Luo et al. 2020), which
provides us a new opportunity to perform a comprehensive
assessment of future changes in temperature.

Therefore, this section initiatively investigates the
prospective changes in the mean state, variance, and extreme
values of global temperature under three greenhouse gas
emissions scenarios, including Representative Concentration
Pathway (RCP) 2.6, RCP4.5, and RCP8.5, for two target
periods (the 2030s and 2050s). The present results provide a
fundamental reference for the relevant climate risk identifi-
cation and assessment.
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2 Data

The global daily maximum and minimum temperature for
the period from 1950 to 2100 were retrieved from the
NEX-GDDP dataset, including downscaled projections from
the 21 models under RCP4.5 and RCP8.5 greenhouse gas
emissions scenarios for which daily datasets were produced
and distributed under CMIP5. The spatial resolution of the
data is 0.25° (*25 km � 25 km). In addition, the projec-
tion with the same resolution for RCP2.6 from the 13 models
was assimilated by the Institute of Atmospheric Physics
(IAP) and Chinese Academy of Sciences (CAS), which
covers the region between 60°S and 90°N (Xu and Wang
2019). The NEX-GDDP dataset can be freely accessed on
the following website: https://www.nccs.nasa.gov/services/
data-collections/land-based-products/nex-gddp.

3 Method

Here the temporal range is divided into three periods: the
historical period (2000s) defined as 1986–2005, the future
period 2030s (2016–2035), and the future period 2050s
(2046–2065). Note that summer and winter refer to June–
July–August (JJA) and December–January–February (DJF),
respectively. Furthermore, the extreme temperature is mea-
sured by both an absolute index (TXx) and two percentile
indices (TX90p and TN10p) according to the definitions of
extremes indices recommended by the Expert Team on
Climate Change Detection and Indices (ETCCDI) (Karl and

Easterling 1999; Zhang et al. 2011; Fan et al. 2020). Tmean
is defined as the average daily minimum and maximum
temperature. Tstd is defined as the standard deviation of the
daily mean temperature. TXx refers to the multi-model
ensemble of annual maximum near-surface air temperature
during the historical period or future time periods based on
the NEX-GDDP models. TX90p (TN10p) refers to the per-
centage of the days with the daily maximum (minimum)
temperature exceeding (below) the local calendar day 90th
(10th) percentile centered on a 5-day window for the base
period 1961–1990. In addition, The Tmean change is cal-
culated by subtracting the Tmean during the historical per-
iod (2000s) from the Tmean under the RCP scenarios in the
future. The model uncertainty of the Tmean is represented
by the standard deviation of the Tmean under the RCP
scenarios during the different periods based on all selected
models. Changes and model uncertainties of Tstd, TXx,
TX90p, and TN10p are calculated in the same way as
Tmean.

4 Major Findings

Figure 1 shows the daily Tmean over nine regions under
different greenhouse gas emissions scenarios, respectively,
for the 2030s and 2050s. Compared to the historical period
(gray bar), the nine selected regions in all RCP scenarios are
expected to experience warming in the future. Under the
same RCP scenarios, Tmean in the 2050s is higher than in
the 2030s in all regions.

Fig. 1 Area-averaged Tmean in nine regions under different Repre-
sentative Concentration Pathway (RCP) scenarios. The error bar
represents the one standard deviation across all selected models—13
general circulation models (GCMs) (RCP2.6) and 21 GCMs (RCP4.5
and RCP8.5). NAS, MED, NAU, SQF, AMZ, TIB, EAS, SEA, and
ENA represent North Asia (47–70°N, 60.5–180.5°E), Mediterranean

Basin (30–47°N, 10.5°W–37.5°E), Northern Australia (28–10°S,
109.5–155.5°E), South Equatorial Africa (26–0°S, 0.5–55.5°E), Ama-
zon Basin (20°S–10°N, 78.5–34.5°W), Tibet (30–47°N, 80.5–104.5°
E), East Asia (20–47°N, 104.5–140.5°E), Southeast Asia (10°S–20°N,
100.5–150.5°E), and Eastern North America (25–50°N, 85.5–60.5°W),
respectively. The regional division follows Giorgi and Bi (2005)
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The standard deviations of the daily mean temperature for
the nine regions under different greenhouse gas emissions
scenarios are shown in Fig. 2. The temperature deviations in
most areas are about 0.4 °C in all scenarios. In comparison,
the North Asia region exhibits the largest temperature
deviation with high uncertainty, while the lowest deviations
appear in South Equatorial Africa and Southeast Asia under
the RCP2.6 scenarios.

The annual maximum near-surface air temperature for the
nine regions under different RCP scenarios is shown for

three epochs in Fig. 3. Similar to the Tmean, the rising TXx
occurs in all regions under all scenarios in comparison with
the historical period (gray bar). Regions with high TXx are
mainly located in the Mediterranean Basin, Northern Aus-
tralia, and the Amazon Basin. Additionally, the TXx differ-
ence between the 2050s and the 2030s is larger under the
RCP8.5 scenarios.

The percentage of the days with a daily maximum tem-
perature greater than the 90th percentile of the base period
for the nine regions under different RCP scenarios is shown

Fig. 2 Standard deviation of the daily mean temperature (Tstd) in nine regions under different Representative Concentration Pathway
(RCP) scenarios. The error bar represents the one standard deviation across all selected models. Region abbreviations are the same as in Fig. 1

Fig. 3 Annual maximum near-surface air temperature (TXx) in nine regions under different Representative Concentration Pathway
(RCP) scenarios. The error bar represents the one standard deviation across all selected models. Region abbreviations are the same as in Fig. 1
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in Fig. 4. Invariably, TX90p will increase significantly in all
regions in the future, regardless of the scenario. In particular,
in the 2050s, TX90p is expected to even exceed the historical
period by a factor of four under the RCP8.5 scenario.

The percentage of the days with the daily minimum tem-
perature less than the 10th percentile of the base period is
shown for the nine regions under the three RCP scenarios in

three epochs in Fig. 5. Compared to the historical period (gray
bar), six of the nine selected regions—North Asia, the
Mediterranean Basin, Northern Australia, South Equatorial
Africa, Southeast Asia, and Eastern North America—are
expected to have a decreased TN10p in the future in all RCP
scenarios. In the 2030s, TN10p in the other three regions (the
Amazon Basin, Tibet, and East Asia) increases under RCP2.6.

Fig. 4 Percentage of the days with the daily maximum temperature
greater than the 90th percentile of the base period (TX90p) in nine
regions under different Representative Concentration Pathway

(RCP) scenarios. The error bar represents the one standard deviation
across all selected models. Region abbreviations are the same as in
Fig. 1

Fig. 5 Percentage of the days with the daily minimum temperature less
than the 10th percentile of the base period (TN10p) in nine regions
under three Representative Concentration Pathway (RCP) scenarios.

The error bar represents the one standard deviation across all selected
models. Region abbreviations are the same as in Fig. 1
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Mapping Precipitation Changes

Xianghui Kong, Xiaoxin Wang, Huopo Chen, Aihui Wang, Dan Wan,
Lianlian Xu, Yue Miao, Ju Huang, Yang Liu, Ruiheng Xie, Yue Chen,
and Xianmei Lang

1 Introduction

Compared to the observed changes in temperature, the
changes in precipitation show more uncertainty (Hartmann
et al. 2013). The IPCC AR5 indicated that anthropogenic
forcing has contributed to a global-scale intensification of
heavy precipitation since the second half of the twentieth
century (IPCC 2013) and the intensity of daily precipitation
increases more under the higher warming scenarios (Weber
et al. 2018).

To achieve a comprehensive understanding of changes in
precipitation in the future, this section initiatively assesses

the change of precipitation characteristics, such as mean
amount, variability, and extremes under three greenhouse
gas emissions scenarios, including Representative Concen-
tration Pathway (RCP) 2.6, RCP4.5, and RCP8.5.

2 Data

Same as the daily maximum and minimum temperature data,
the global daily precipitation data were also retrieved from
the NEX-GDDP dataset under RCP4.5 and RCP8.5 from 21
climate models in the Coupled Model Intercomparison
Project Phase 5 (CMIP5) (https://www.nccs.nasa.gov/
services/data-collections/land-based-products/nex-gddp).
Furthermore, the precipitation data from 13 models in
CMIP5 under the RCP2.6 scenario have also been down-
scaled by the Institute of Atmospheric Physics (IAP) Chi-
nese Academy of Sciences (CAS) (Xu and Wang 2019).
This dataset covers all grids between 60°S and 90°N global
land area. The spatial resolution of the data for all maps is
0.25° (*25 km � 25 km).

3 Method

The precipitation extremes cover three time periods,
including the historical period (1986–2005, denoted as the
2000s), and two future periods 2016–2035 (2030s) and
2046–2065 (2050s). Summer represents June–July–August
(JJA), and winter is December and January–February
(DJF) of the following year.
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Total precipitation in wet days (Pr) is defined as the
20-year mean of summation of all daily precipitation amount
� 1 mm d−1 during the 2000s, 2030s, and 2050s. The Pr
change (%) is defined as:

Prchange ¼ 100%� Pr2030s�Pr2000sð Þ=Pr2000s ð1Þ

Prchange ¼ 100%� Pr2050s�Pr2000sð Þ=Pr2000s ð2Þ
The inter-model uncertainty of Pr (ensemble spread) is

defined as the standard deviation of the Prchange across all
models.

Precipitation variability is defined as the standard devia-
tion of Pr during three different periods. The change of
precipitation variability during the 2030s and 2050s is cal-
culated similarly as Eqs. (1) and (2), respectively. The
inter-model uncertainty is the standard deviation of the
precipitation variability across all models.

Precipitation extreme indices, including RX1day, RX5-
day, and R10mm, are adopted from the Expert Team on
Climate Change Detection and Indices (ETCCDI, see Klein
Tank et al. (2009) and Zhang et al. (2011)).

RX1day is the maximum 1-day precipitation amount
(mm/day). R10mm is the number of days when daily pre-
cipitation amount � 10 mm. RX5day is the maximum con-
secutive 5-day precipitation. The definition of RX1day
change, RX5day change, and R10mm change and their
inter-model uncertainty are similarly defined as those in Eqs.
(1) and (2).

4 Major Findings

Nine regions were selected following Giorgi and Bi (2005)
to quantitatively compare the changes of precipitation under
the three greenhouse gas emissions scenarios. These regions
are sensitive to global warming (Xu et al. 2019). Figures 1,
2, 3, 4 and 5 show the area-weighted average annual total
precipitation in wet days, precipitation variability, annual
maximum 1-day precipitation (RX1D), annual days of daily
precipitation equal to or greater than 10 mm (R10mm), and
annual maximum consecutive 5-day precipitation (RX5D),
respectively. Generally, the changes in precipitation depend
on the greenhouse gas emissions scenario and the region.

Fig. 1 Annual total precipitation in wet days (unit: mm) in nine
regions under different Representative Concentration Pathway
(RCP) scenarios. The error bar represents the one standard deviation
across all selected models—13 general circulation models (GCMs)
(RCP2.6) and 21 GCMs (RCP4.5 and RCP8.5). NAS, MED, NAU,
SQF, AMZ, TIB, EAS, SEA, and ENA represent North Asia (47–70°N,
60.5–180.5°E), Mediterranean Basin (30–47°N, 10.5°W–37.5°E),

Northern Australia (28–10°S, 109.5–155.5°E), South Equatorial Africa
(26–0°S, 0.5–55.5°E), Amazon Basin (20°S–10°N, 78.5–34.5°W),
Tibet (30–47°N, 80.5–104.5°E), East Asia (20–47°N, 104.5–140.5°E),
Southeast Asia (10°S–20°N, 100.5–150.5°E), and Eastern North
America (25–50°N, 85.5–60.5°W), respectively. The regional division
follows Giorgi and Bi (2005)
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Fig. 2 Variability of annual total precipitation in wet days (unit: mm)
in nine regions under different Representative Concentration Pathway
(RCP) scenarios. The error bar represents the one standard deviation

across all selected models. Region abbreviations are the same as in
Fig. 1

Fig. 3 Annual maximum 1-day precipitation (unit: mm) in nine
regions under different Representative Concentration Pathway
(RCP) scenarios. The error bar represents the one standard deviation

across all selected models. Region abbreviations are the same as in
Fig. 1
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Fig. 4 Annual days of daily precipitation equal to or greater than
10 mm (unit: d) in nine regions under different Representative
Concentration Pathway (RCP) scenarios. The error bar represents the

one standard deviation across all selected models. Region abbreviations
are the same as in Fig. 1

Fig. 5 Annual maximum consecutive 5-day precipitation (unit: mm)
in nine regions under different Representative Concentration Pathway
(RCP) scenarios. The error bar represents the one standard deviation

across all selected models. Region abbreviations are the same as in
Fig. 1
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Mapping Wind Speed Changes

Rui Mao, Cuicui Shi, Qi Zong, Xingya Feng, Yijie Sun, Yufei Wang,
and Guohao Liang

1 Introduction

Wind variability has a major impact on water cycles, wind
energy, and natural hazards and disasters such as hurricanes
and typhoons. In the past decades, the global and regional
mean near-surface wind speed (sfcWind) has shown a sig-
nificantly downward trend, especially in the mid-latitudes in
the Northern Hemisphere (Wu et al. 2018). The global mean
terrestrial sfcWind has decreased linearly at a rate of
0.08 m s−1 per decade during 1981–2011. Vautard et al.
(2010) analyzed changes in sfcWind at stations across the
globe and found that 73% of the total stations presented a
decrease in the annual mean sfcWind, with linear trends of
−0.09, −0.16, −0.12, and −0.07 m s−1 per decade in
Europe, Central Asia, East Asia, and North America,
respectively. In addition, a pronounced reduction in extreme
sfcWind has also been observed in Europe and the United
States (Yan et al. 2002; Pryor et al. 2012). However, because
long-term observational data are lacking in most land areas

and oceans, the uncertainty in the long-term trend of
sfcWind is high, particularly in the Southern Hemisphere
and over oceans.

The Coupled Model Intercomparison Project Phase 5
(CMIP5) aims to understand the past climate changes, make
projections, and estimate future uncertainties. For example,
with respect to the historical period (1979–2005), the
multi-model ensemble mean of simulations in the CMIP5
projects a decrease in the annual maximum wind speeds at
the end of this century (2074–2100) over the contiguous
United States and most regions of Asia in the high latitudes
and an increase in the annual maximum wind speeds over
Amazonia, India, Africa, and Southeast Asia, whereas few
changes are projected to occur over Europe (Kumar et al.
2015). It is worth noting that studies on extreme wind speed
in Asia, Africa, and South America as well as those on mean
sfcWind over the Southern Hemisphere by using the CMIP5
simulations are lacking. Moreover, the uncertainty analysis
in regional mean sfcWind and extreme wind speed in the
CMIP5 results is ignored in previous studies. For example,
the CMIP5 models fail to represent the current wind climate
over the Bay of Bengal (Krishnan and Bhaskaran 2019) and
show relatively poor skill for the long-term temporal trends
over the Northern Hemisphere (Tian et al. 2019).

To achieve a comprehensive understanding of the chan-
ges in global sfcWind and extreme wind speed in the future
and their uncertainties in the results of CMIP5 models, this
section initiatively assesses the changes of the mean state,
variance, and extreme conditions of sfcWind under three
greenhouse gas emission scenarios (Representative Con-
centration Pathway (RCP2.6, RCP4.5, RCP8.5).
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2 Data

The global average daily sfcWind and daily maximum
sfcWind data are provided by the Coupled Model Inter-
comparison Project Phase 5 (CMIP5) from the World Cli-
mate Research Programme (WRCP), where daily sfcWind
includes 24 models for the historical period and RCP4.5 and
RCP8.5 scenarios and 16 models for the RCP2.6 scenario,
and daily maximum sfcWind includes 19 models for his-
torical period and RCP4.5 and RCP8.5 scenarios and 11
models for RCP2.6 scenario. The spatial resolution of the
data is 0.5 degrees (*50 km � 50 km). The CMIP5 data
can be freely accessed on this website: https://esgf-node.llnl.
gov/search/cmip5/.

3 Method

We divided the temporal range into three periods, including
the historical period (1986–2005, denoted as the 2000s), and
two future time periods: 2016–2035 (2030s) and 2046–2065
(2050s). In this study, summer is defined as June–July–
August (JJA), and winter is defined as December and Jan-
uary–February of the following year (DJF).

The mean near-surface wind speed (sfcWind) is defined
as the 20-year mean of all daily near-surface wind speed for
the historical period and the two future time periods under
the three RCP scenarios. The sfcWind change was calculated
by subtracting the sfcWind during the historical period
(2000s) from that under the RCP scenarios in the future
temporal ranges. The model uncertainty of the mean
sfcWind is represented by the standard deviation of the mean
sfcWind across the models for the three periods.

The near-surface wind speed variability (sfcWind std) is
defined as the standard deviation of the daily mean
near-surface wind speed during the three periods. The
change in sfcWind variability was calculated by subtracting
the sfcWind std during the historical period (2000s) from the
sfcWind std under the RCP scenarios in the future temporal
ranges. The model uncertainty of the sfcWind std is repre-
sented by the standard deviation of the sfcWind std for the
three periods across the models.

The maximum near-surface wind speed (sfcWindmax)
mean is defined as the 20-year mean of all daily maximum
near-surface wind speed for the historical period and the two
future time periods under the three RCP scenarios. The
sfcWindmax change was calculated by subtracting the
sfcWindmax during the historical period (2000s) from the
sfcWindmax under the RCP scenarios in the future temporal
ranges. The model uncertainty of the mean sfcWindmax is
represented by the standard deviation of the mean
sfcWindmax for the three periods across the models.

The maximum near-surface wind speed variability
(sfcWindmax std) is defined as the standard deviation of the
daily mean maximum near-surface wind speed during the
three periods. The change in sfcWindmax variability was
calculated by subtracting the sfcWindmax std during the his-
torical period (2000s) from the sfcWindmax std under theRCP
scenarios in the future temporal ranges. Themodel uncertainty
of the sfcWindmax std is represented by the standard deviation
of the sfcWindmax std for the three periods across the models.

Because of the varying spatial resolutions of the simula-
tions in the CMIP5, the variables are interpolated by using a
bilinear interpolation with a high spatial resolution of
0.5° � 0.5°.

4 Major Findings

Surface wind speed, surface wind speed variability, and sur-
face maximum wind speed in nine global regions under cli-
mate change are shown in Figs. 1, 2 and 3. In general, under the
climate warming scenarios, the surface wind speed increases
in North Asia, the Mediterranean Basin, Tibet, and Eastern
North America, and decreases in low latitude areas, such as
Northern Australia and theAmazon Basin. Comparedwith the
historical period, the interannual variability of wind speedwill
increase. However, with climate warming, the interannual
variation of surface wind speed will be different in different
regions—it is projected to decrease in the Mediterranean
Basin and Tibet, and increase in the Amazon Basin and
Southeast Asia. The overall change of the surface maximum
wind speed is not obvious, and only in Tibet and the
Mediterranean Basin it will decrease with the climate change.
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Fig. 2 Variability of mean surface wind speed (unit: m/s) in nine
regions under different Representative Concentration Pathway
(RCP) scenarios. The error bar represents the one standard deviation

across 16 general circulation models (GCMs) (RCP2.6) and 24 GCMs
(RCP4.5 and RCP8.5). Region abbreviations are the same as in Fig. 1

Fig. 1 Mean surface wind speed (unit: m/s) in nine regions under
different Representative Concentration Pathway (RCP) scenarios. The
error bar represents the one standard deviation across 16 general
circulation models (GCMs) (RCP2.6) and 24 GCMs (RCP4.5 and
RCP8.5). NAS, MED, NAU, SQF, AMZ, TIB, EAS, SEA, and ENA
represent North Asia (47–70°N, 60.5–180.5°E), Mediterranean Basin

(30–47°N, 10.5°W–37.5°E), Northern Australia (28–10°S, 109.5–
155.5°E), South Equatorial Africa (26–0°S, 0.5–55.5°E), Amazon
Basin (20°S–10°N, 78.5–34.5°W), Tibet (30–47°N, 80.5–104.5°E),
East Asia (20–47°N, 104.5–140.5°E), Southeast Asia (10°S–20°N,
100.5–150.5°E), and Eastern North America (25–50°N, 85.5–60.5°W),
respectively. Regional division follows Giorgi and Bi (2005)
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Fig. 3 Surface maximum wind speed (unit: m/s) in nine regions under
different Representative Concentration Pathway (RCP) scenarios. The
error bar represents the one standard deviation across 11 general

circulation models (GCMs) (RCP2.6) and 19 GCMs (RCP4.5 and
RCP8.5). Region abbreviations are the same as in Fig. 1
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Mapping Global Population Changes

Yujie Liu and Jie Chen

1 Introduction

The increase in greenhouse gas emissions caused by human
activities is considered as the main cause of global warming
(Stocker et al. 2013). The rapid growth of population and
economic activities in the twentieth century has brought
unprecedented pressure on climate and the environment, and
population has become an important topic in climate change
research (Min et al. 2011; Diaz andMoore 2017; Forzieri et al.
2017). Accurate and robust predictions of population size and
spatial distribution will help to assess the impact of climate
change on socioeconomic development, human health, and
resource demand and distribution, and provide a scientific
basis for designing strategies to control greenhouse gas
emissions and developing mitigation and adaptation policies
(Lutz and Kc 2011; Field et al. 2014; Gerland et al. 2014).

Climate scenarios constitute the basis of climate change
research, and the rational setting of socioeconomic develop-
ment scenarios is the core of climate change impact assess-
ment (Van Vuuren et al. 2012). Shared socioeconomic
pathways (SSPs) are reference pathways that describe alter-
native trends that may emerge in social and economic system
development in the twenty-first century in the absence of

climate change or climate policies (O’Neill et al. 2014). Five
such SSP schemes (SSP1–5) have been developed. In partic-
ular, SSP1 is a sustainable solution that advances in technol-
ogy and reduces reliance on carbon energy; SSP2 describes a
medium-sized solution that can maintain the current trend and
gradually reduce the reliance on carbon energy; and SSP3 is a
regionalization program that leads to reduced trade flows,
adverse institutional development, and poor adaptation to
climate change. Based on these SSPs, preliminary studies have
been conducted on demographic and economic changes in
more than 150 countries (O’Neill et al. 2014). It is expected
that there will be more attention paid to the size, as well as the
spatial distribution of future populations in the SSP scenarios,
with the increasing demand for demographic analysis in small
areas related to climate change (Chi 2009;Raymer et al. 2012).

This study aims to evaluate the changes in the global
population under SSP1-2030, SSP1-2050, SSP2-2030,
SSP2-2050, SSP3-2030, and SSP3-2050. We produced the
data at the global and regional scales. The spatial resolution of
global projections is 0.5° � 0.5°, and the spatial resolution of
regional projections is 0.25° � 0.25°. The four hotspot
regions are the Bohai Rim area in China, the Qinghai-Tibet
Plateau in China, the northeastern United States, and western
Europe. The present results may provide a scientific basis for
climate risk assessment and effective adaptations.

2 Method

The methods for projecting population and its change for
future SSP scenarios are as follows: (1) collecting the sta-
tistical data of national populations in 2005; (2) analyzing
the projections of national populations under the three SSP
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scenarios in 2030 and 2050; (3) conducting the spatial
downscaling of the populations at the country level to the
grid level; and (4) summarizing the results of population
projections. Figure 1 shows the technical flowchart for the
projection and mapping of the populations of the world.

For population projections, the population at the country
level in 2005 was obtained from the World Bank (https://data.
worldbank.org.cn/), the International Monetary Fund (https://
www.imf.org/en/Data), theCentral IntelligenceAgency (https://
www.cia.gov/), and the United Nations (https://data.un.org/).

The global distribution of population in 2010 was assessed
based on the population of the baseline period (2005) mul-
tiplied by the growth rate of population. The growth rate was
calculated based on the population projections at the country
level by the International Institute for Applied Systems
Analysis (IIASA) (Samir and Lutz 2014). The statistical
analysis was performed using ArcGIS. Then, the national
population projections were spatially downscaled with ref-
erence to the spatial distribution of UN-WPP-Gridded Pop-
ulation of the World (GPW), v4 in 2005 (Doxsey-Whitfield
et al. 2015). The spatial analysis was performed using Arc-
GIS. Then, the gridded population projections were sum-
marized at the national, continental, and global scales, and
the proportions of each continent to the world and the pro-
portion of China were calculated for analysis.

3 Results

Global and continental populations under the SSP1–3 sce-
narios are shown in Fig. 2. The global population for the
baseline period is 6575.50 � 106 persons, which increases
to 9542.47 � 106 persons by 2050 under the SSP3 scenario.
The increase in population is the largest for the SSP3 sce-
nario and the smallest for SSP1. Among the continents, the
population is the highest for Asia, followed by Africa, and
the lowest in Oceania in both the baseline period (2010) and
the SSP scenarios. Population in Asia and Africa in the
baseline period is 61% and 15%, respectively. The per-
centage of population under the three SSP scenarios
decreases for Asia and increases for Africa. The percentage
of the population by 2050 under the SSP3 scenario decreases
for Asia to 57% and increases for Africa to 24% of the
global total. Population in China is projected to increase
under all the SSP scenarios and time periods compared to the
baseline period. However, the percentage of the Chinese
population in Asia and the world is likely to decrease. In the
baseline period, China accounted for 33% and 20% of the
population in Asia and the world, while in 2050 under the
SSP3 scenario, the percentage would decrease to 24% and
14%, respectively (Fig. 2).

IIASAInternational 
Monetary Fund 

Central Intelligence 
Agency

World Bank

Data Source
United Nations

Predict growth rate of national populationStatistical analysis

Downscale the population projection to grid levelSpatial analysis
Methods

Population projections at grid level
Global: 0.5°×0.5°; regional: 0.25°×0.25°

Summarize population projections at national , continental , and global scales
Results

Fig. 1 Technical flowchart for the projection and mapping of the population of the world
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Fig. 2 Projections of global and continental populations under the Shared Socioeconomic Pathways
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Mapping Global Population Exposure
to Heatwaves

Qinmei Han, Wei Xu, and Peijun Shi

1 Background

Global warming has become a severe problem worldwide,
where the average global temperature has steadily increased
over recent decades, accompanied by the abnormally hot
weather (IPCC 2013). Since the 1950s, heatwave events
have increased in frequency, intensity, and duration and their
impact on human health will also increase under enhanced
global warming (Perkins-Kirkpatrick and Lewis 2020).
Heatwaves have become one of the most serious climate
events in the world. Thousands of people have died from
exposing to heatwaves in recent years, for instance, the
European heatwave of 2003 induced more than 70,000
additional deaths (Robine et al. 2008). Heat-related mortality
and morbidity are not only attributed to natural hazards
resulting from climate change (Seneviratne et al. 2012). Both
climatic factors and socioeconomic factors such as popula-
tion change and vulnerability of people exposed to heat-
waves have impact on the number of deaths caused by
heatwaves. Thus, a comprehensive and quantitative assess-
ment of heatwave exposure is conducive to taking targeted
measures to reduce the risk in hotspot regions of the world.

Compared to heat-related mortality risk assessment,
assessment of exposure has received little attention in recent
years. A few studies have examined global or regional

population exposure to heatwaves (Jones et al. 2015; Liu
et al. 2017; Chen et al. 2020), and all the existing results
show that heatwave exposure will have a significant increase
in the future compared to the historical periods.

We combined the future projections of temperature under
the three Representative Concentration Pathways (RCP2.6,
RCP4.5, and RCP8.5) and the future projections of popu-
lation under the three Shared Socioeconomic Pathways
(SSP1, SPP2, and SSP3) to evaluate future population
exposure to heatwaves across the world at the grid level
(0.25° � 0.25°) and the country level, respectively, in dif-
ferent time periods. The scenario combinations are
RCP2.6-SSP1, RCP4.5-SSP2, and RCP8.5-SSP3. We also
computed the decadal exposure change in the 2030s (2016–
2035) and the 2050s (2046–2065) compared to the baseline
period (1986–2005) using high spatial resolution climate and
population data under different scenario combinations.

2 Method

This study used daily maximum temperature as metric to
estimate heatwaves. The daily maximum temperature data
were obtained from the NASA Earth Exchange Global Daily
Downscaled Projections (NEX-GDDP), which was released
in June 2015 (https://dataserver.nccs.nasa.gov/thredds/
catalog/bypass/NEX-GDDP/catalog.html). The spatial reso-
lution of the data is 0.25° � 0.25°. There are 21 general
circulation models in this dataset, which contain two Rep-
resentative Concentration Pathways (RCPs)—RCP4.5 and
RCP8.5—for the period from 1950 to 2100. The temperature
data of the lower emissions scenario RCP2.6 was computed
by sub-project 1. The population projection data used in this
study contained SSP1–3 computed by sub-project 2. We
calculated heatwave intensity and heatwave exposure for
two time periods (2016–2035 and 2046–2065) in the future
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compared to 1986–2005 under the three RCP-SSPs combi-
nations—RCP2.6-SSP1, RCP4.5-SSP2, and RCP8.5-SSP3.
Figure 1 shows the technical flowchart for mapping the
global population exposure to heatwaves.

2.1 Heatwave Intensity Metrics

Heatwave was defined here as at least 3 consecutive days
exceeding the given temperature threshold, which is the 95th
percentile value of the daily maximum temperature series
over the baseline period 1986–2005 at the grid level, and if
the 95th percentile value was lower than 25 °C, we set 25 °C
as the threshold in this grid. The annual heatwave intensity
was quantified as the total heatwave days in a year.

2.2 Exposure

In this study, exposure was defined as the total population
exposed to a heatwave, which was calculated by multiplying
annual population and annual total number of heatwave days
at the grid level. So the unit of exposure is person-day. For
both the baseline period (1986–2005) and the future periods

(2016–2035, 2046–2065), we calculated the 20-year average
value of exposure to map the global exposure to heatwaves
and compute the interdecadal change of exposure. In addi-
tion, we aggregated exposure of the grid level to the national
level for further analysis.

3 Results

3.1 Heatwave Intensity

The spatial patterns of multi-model ensemble heatwave days
for both the baseline period and the future periods are sim-
ilar, whereas the regions with high heatwave days are mainly
distributed at the equator and gradually decrease with
increasing latitude. The number of heatwave days signifi-
cantly increases over time. The global mean annual heat-
wave days in the baseline period are 18 days, which increase
up to 50 days in the 2050s under high-emission scenarios.
The highest heatwave days are 50.7 days in the baseline
period, which is estimated to exceed 300 days in the 2050s
under the RCP8.5 scenarios. The heatwave days are signif-
icantly higher in the 2050s (2046–2065) than the 2030s
(2016–2035) under different scenario combinations.

Multi-model ensembleTemperature Data

RCP2.6-SSP1
RCP4.5-SSP2
RCP8.5-SSP3

Population dataHeatwave 
Days

T95%    25℃

3 Scenarios Group

Exposure 1986-2005(Baseline)
2016-2035(2030s)
2046-2065(2050s)

20-year average

Decadal exposure at grid/
national level

Decadal exposure change at grid/
national level

Fig. 1 Technical flowchart for mapping global heatwave exposure
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3.2 Heatwave Exposure

Regions with high heatwave exposure are primarily con-
centrated in densely populated areas, such as India, China,
central Europe, and eastern United States for both the
baseline and the future periods. It is estimated that in the
2050s (2046–2065), under the high-emission scenario
(RCP8.5-SSP3), the global 20-year average exposure to
heatwaves will increase by 3.4 times (*103.1 billion
person-day) compared to the baseline period (*24 billion
person-day), including 6.8 times in Africa, 4.8 times in
South America, 2.7 times in Asia, 2.7 times in North
America, 1.3 times in Europe, and 2.6 times in Oceania.
Under the low-emission scenarios RCP4.5-SSP2 and

RCP2.6-SSP1, the global average heatwave exposure
increases by 2.2 times (*75.7 billion person-day) and 1.4
times (*56.0 billion person-day), respectively.

Exposure to heatwaves at the grid level was aggregated to
the country scale for further analysis. The top 10 countries
with high heatwave exposure are shown in Fig. 2. These
countries are mainly located in Africa and Asia. Compared
to the baseline period, the heatwave exposure of all countries
increased significantly especially in the 2050s under differ-
ent scenario combinations. For example, the annual total
heatwave exposure of India is about 4.5 billon person-day in
the historical period (1986–2005), which increases to 16.7
billion person-days for 2046–2065 under the RCP8.5-SSP3
scenario.

Fig. 2 Population exposure to heatwaves of the top 10 countries. The error bar represents the one standard deviation across the 21 (13 for
Representative Concentration Pathway(RCP)2.6) general circulation models and 3 shared socioeconomic pathways (SSPs)
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Mapping Global Population Exposure
to Rainstorms

Xinli Liao, Junlin Zhang, Wei Xu, and Peijun Shi

1 Background

With global warming, the global hydrological cycle and the
spatiotemporal pattern of extreme precipitation have chan-
ged greatly in recent years (IPCC 2013; Kong 2020). Evi-
dence from both observations and climate model simulations
suggests that the frequency and intensity of extreme pre-
cipitation showed an increasing trend and will further
increase in the future with climate change. For example,
Westra et al. (2013) examined data from 8326 high-quality
land-based observing stations globally and found that about
two-thirds of the stations showed a significant increase in
extreme precipitation. Using the same dataset but for a
longer time period, Sun et al. (2021) found that a larger
percentage of stations showed statistically significant
increasing trends. Climate projections from the Coupled
Model Intercomparison Project Phase 5 show continued
intensification of daily precipitation extremes from 1951 to
2099 (Donat et al. 2016). Given that extreme precipitation
and its induced disasters (e.g., floods and landslides) are one
of the most serious consequences of climate change and pose
a great threat to life and property, it has aroused widespread
attention. Understanding exposure is necessary for disaster
risk reduction (IPCC 2012). Likewise, with the social and
economic developments and the acceleration of

urbanization, the population exposed to natural hazards is
increasing and demographic changes, such as an increase in
the elderly population, will also amplify exposure of vul-
nerable people (Qin et al. 2015; Liang et al. 2017). Different
levels of global warming (e.g., 1.5 °C and 2 °C) would
cause different population exposure to extreme precipitation,
and an 0.5 °C less warming would reduce exposures
remarkably (Zhang et al. 2018; Shi et al. 2021). From the
baseline period to the end of the twenty-first century, under
Representative Concentration Pathway (RCP) 4.5-shared
socioeconomic pathway (SSP) 2 scenario, population
exposure to rainstorms shows an increasing trend in most
regions of the world, and the areas with high exposure are
mainly distributed in Asia (Liao et al. 2019). By the end of
the twenty-first century, although China’s estimated popu-
lation will drop, the population exposure to extreme pre-
cipitation will increase significantly under the RCP4.5-SSP2
scenario and the increase in the RCP8.5-SSP3 scenario is
even larger (Chen and Sun 2020). While there exist many
studies on population exposure to extreme precipitation, the
resolution of climate models used in most studies is rela-
tively coarse and there are few studies on RCP2.6 scenarios.

In this section, the population exposure to rainstorms of
the world was calculated based on daily precipitation data
(RCP2.6, RCP4.5 and RCP8.5) from the Institute of
Atmospheric Physics, Chinese Academy of Sciences and
population data (SSP1, SSP2, and SSP3) from the Institute
of Geographic Sciences and Natural Resources Research,
Chinese Academy of Sciences. The data cover three time
periods and three scenario combinations, namely, the base-
line (1986–2005), 2030s (2016–2035), and 2050s (2046–
2065) and the RCP2.6-SSP1 scenario, RCP4.5-SSP2 sce-
nario, and RCP8.5-SSP3 scenario, respectively. Based on
these, the global population exposure to rainstorms was
assessed and mapped at the grid level.
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2 Method

In this section, rainstorm was defined by daily precipitation
exceeding the 95th percentile value for each grid. The
method improved by Bonsal et al. (2001) was used when
calculating the 95th percentile, in which daily precipitation
data for each year were first ranked in ascending order X1,
X2,…, XN, and the probability Pro that a random value is less
than or equal to the rank of that value Xm was estimated by
Eq. (1).

Pro ¼ m � 0:31ð Þ = ðN þ 0:38Þ ð1Þ
where m is the rank and N is the number of samples. For
example, if there are 120 values, the 95th percentile value is
linearly interpolated between the 115th-ranked value (cor-
responding to Pro = 95.27%) and the 114th-ranked value
(Pro = 94.44%).

Figure 1 shows the technical flowchart for mapping the
population exposure to rainstorms. We first calculated the
threshold of each model for each year, then calculated the
average threshold values of the 20 years in each period,
which represents the threshold of each model for each per-
iod. Multi-model ensembles (MMEs) are widely used in
research especially for global-scale climate change studies
because it is generally found to have a better performance
than single models. So, in this study, the average of the
individual rainstorm thresholds of the 21 models (RCP2.6
has only 13 models) was calculated and used as the rain-
storm threshold for each grid. Based on the threshold value,
we calculated the annual rainfall from rainstorms
(R95pTOT) by accumulating daily precipitation exceeding
the threshold in a certain year for each model, then used the

20-year averages of the rainfall in each period to represent
the rainstorm intensity, and rainfall from rainstorms was the
average of the 21 models (RCP2.6 has only 13 models).

In this study, population exposure to rainstorms is defined
as the population in rainstorm-prone areas. The exposure can
be computed by multiplying the rainstorm intensity and
population for each grid. Then by zonal statistics, we derived
national population exposures to rainstorms. We obtained
the change of exposures by subtracting exposures in the
baseline period from exposures in the future scenarios and
then calculated exposures’ change of the MME by the same
method as for exposures. We used standard deviation to
represent the uncertainty between models.

3 Results

By zonal statistics of the population exposure to rainstorms,
we obtained the national population exposures to rainstorms
of each country/region and present the data of the top 10
countries/regions in Fig. 2. Figure 2 shows that most of
these countries are in Asia. The exposures of India and
China are more than 2.5 � 1011 person � mm, which is 2 to
18 times of the other eight countries.

The spatial distribution patterns of the population exposure
to rainstorms are similar for each scenario and time period
combination. The areas with high exposure are mainly dis-
tributed in East Asia (e.g., southeastern China,
South Korea, and Japan), South Asia (e.g., India and Ban-
gladesh), and Southeast Asia (e.g., the Philippines and
Indonesia), and scattered in Africa (e.g., Uganda, Nigeria, and
Ethiopia). The spatial patterns in Asia and Africa have chan-
ged the most.
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Fig. 1 Technical flowchart for
mapping global population
exposure to rainstorms
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Fig. 2 Population exposure to rainstorms of the top 10 countries/regions (in descending order by total exposure). The error bar represents the one
standard deviation across the combination of 21 (13 for Representative Concentration Pathway (RCP) 2.6) general circulation models (GCMs) and
3 shared socioeconomic pathways (SSPs)
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Mapping Global GDP Distribution

Fubao Sun, Tingting Wang, and Hong Wang

1 Introduction

Socioeconomic projections are crucial in climate change
impact, mitigation, and adaptation research and risk assess-
ments for future scenarios (O’Neill et al. 2014). The climate
projections in the Scenario Model Intercomparison Project
(ScenarioMIP) are formed based on different Shared
Socioeconomic Pathways (SSPs) and specific Representative
Concentration Pathways (RCPs) of Phase 6 of the Coupled
Model Intercomparison Project (CMIP6) (O’Neill et al.
2016). The development of research on future socioeco-
nomic impact and on reduction in exposure and vulnerability
and increase in resilience to climate extremes (Wilbanks and
Ebi 2014; Chen et al. 2020) can benefit from more spatially
explicit socioeconomic data of higher spatial resolution and
precision under five SSPs (O’Neill et al. 2016).

The GDP is a standard socioeconomic indicator in eco-
nomic development assessment within and across countries

(Nordhaus 2011; Kummu et al. 2018; Tobias 2018), and is
usually provided at the national scale from several global
institutions such as the World Bank, the Organization for
Economic Co-operation and Development (OECD), and so
on. But regional GDP data at a finer spatial resolution (e.g.,
at the state, city, or county level) are often unavailable,
especially in many developing countries (Nordhaus 2011;
Kummu et al. 2018; Huang et al. 2018). The recent devel-
opment of satellite-derived nighttime light (NTL) images
and gridded population data helps disaggregate global and
regional GDP into gridded datasets at various spatial scales
(Doll et al. 2006; Ghosh et al. 2010; Nordhaus 2011; Zhao
et al. 2017) to support current research on climate change
and risk assessments. These disaggregated GDP data are,
however, often biased due to saturation problem of NTL
images or the assumption of even GDP per capita within a
given administrative boundary when using population
datasets. Besides, the global gridded GDP projections of
future SSPs are rather limited (Jones and O’Neill, 2016;
Jiang et al. 2017,2018; Kummu et al. 2018).

The objective of this research is to present a set of spa-
tially explicit global gridded GDP data that are comparable
and represent substantial long-term changes of GDP for both
the historical period and for future projections under five
SSPs (Wang and Sun 2020).
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2 Method

2.1 Global GDP Distribution

National GDP purchasing power parity (PPP) of 195 countries/
regions for 2005 was obtained from Geiger (2018), which was
mainly from the Penn World Tables, and data of missing
countries were taken from another version and theWorld Bank
after rescaling from 2011 to 2005 PPP in U.S. dollars.

2.2 Population-Based GDP Disaggregation

Broad literature has emphasized the role of human capital as a
key driver of economic growth, and population can well
capture the link between the human and economic systems in
various models. Hence, gridded population dataset has been
widely applied in spatial allocation of global and regional
GDP based on several well-known population datasets, e.g.,
the LandScan Global Population database, the Gridded
Population of the World dataset, Version 4 (GPWv4), the
Worldpop, and so on. The GDP disaggregation based on
population dataset (denoted as GDPPop) can be expressed as.

GDPpop ¼ Poppixel � Pcap ¼ Poppixel �
GDPi
Popi

ð1Þ

where GDPpop and Poppixel are the GDP and population in
each pixel in administrative unit i, and Pcap is the GDP per
capita, which is the ratio of GDP total (GDPi) to population
total (Popi) in a given administrative area i.

2.3 NTL-Based GDP Disaggregation

Numericmodelings have shown that the satellite-derivedNTL
data are well correlated with GDP at all examined scales, and
such data has beenwidely used in the spatial allocation ofGDP
across the globe. The Defense Meteorological Satellite Pro-
gram's Operational Linescan System (DMSP-OLS) NTL
images in 2005 (average visible, stable lights, and cloud-free
coverages, satellites F14 and F15 simultaneously collected
global NTL images, and data from F15 were chosen as newer
sensor would have less degradation of data quality) were used
to disaggregate global GDP to a spatial resolution of 30 arc
seconds. Based on the results of relevant studies (Ghosh et al.
2010; Nordhaus 2011; Zhao et al. 2017; Eberenz et al. 2020),
the GDP totals were directly distributed to each pixel in

proportion to the DN values of pixels in a given administrative
area, and the NTL-based GDP disaggregation (denoted as
GDPLit) can be described as

GDPLit ¼ GDPper light � DNpixel ¼ GDPi
SLi

� DNpixel ð2Þ

where GDPi is the total GDP, SLi is the sum of DN values,
GDPper_light is the constant in administrative unit i, and
DNpixel and GDPpixel are the DN value and corresponding
GDP in each pixel in administrative unit i.

The saturation problem in the DMSP-OLS NTL images,
however, has resulted in biased GDP disaggregation (Zhao
et al. 2017). Zhao et al. (2017) improved its accuracy by
incorporating the gridded population data into NTL-based
GDP disaggregation in each pixel, and Eberenz et al.
(2020) further improved this method. By multiplying the
NTL image with the LandScan population data, a LitPop
image was produced based on Eq. (3), which was then used
to spatialize GDP at the global scale (denoted as GDPLit-Pop)
using Eq. (4):

LitPoppix ¼
Pop Lit ¼ 0

Lit � pop Lit[ 0&Pop [ 0
Lit Pop ¼ 0

8
<

:
ð3Þ

GDPLitPop ¼ GDPi
SLPi

� LitPoppix ð4Þ

where LitPoppix is the GDP value of each pixel of the LitPop
data and SLPi is the sum of values of the LitPop image in
administrative unit i.

The technical flow of mapping global GDP is shown in
Fig. 1.

3 Results

To examine the performance of the GDPPop, GDPlit, and
GDPLitPop, comparisons were made between GDP in 205
countries using the World Bank data (Fig. 2a); in 476 states
(provinces) of 36 OECD countries, the United States, and
China (Fig. 2b); and in 5231 counties in the United States
and China (Fig. 2c) in 2005 that are spatially joined to the
corresponding GIS-based administrative boundaries,
respectively. The comparisons show that the accuracy of the
three disaggregated GDP datasets decreases with the change
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(decrease) of their spatial scales, and GDPLitPop is superior to
GDPPop and GDPLit at the national, state (provincial), and
county levels with clear advantages evaluated by their R2

and RMSE (Fig. 2).
Gross National Income (GNI) includes the nation's GDP

plus the income from overseas sources, and has been widely
used to measure and track a nation's wealth from year to
year. Based on GNI per capita (current international dollars
in PPP) in 2019 level from the World Bank, the global and
regional GDP growth depicts major differences under the
three SSP scenarios in 2030 and 2050 by income level of
countries (Table 1). For countries with lower middle income

(� 6761 GNI per capita) and low income (� 2458 GNI per
capita), in 2030 the GDP is about 6 times that of 2005 for
SSP1-3, and reaches as high as 30, 19, and 12 times in 2050,
respectively. In developed countries with high income
(� 52,412 GNI per capita), in 2030 the GDP will only be
about 1.7–.9 times that of 2005, and increase to about 2.6,
2.3, and 1.8 times in 2050 for SSP1–3. Meanwhile, for
countries with middle income (� 11,934 GNI per capita)
and low and middle income (� 10,937 GNI per capita), in
2030 the GDP will be 3.5 and 6.2 times that of 2005,
showing an unequal growth rate among regions.

Table 1 GDP statistics (trillion
USD in 2005 PPP)

High
income

Upper
middle
income

Middle
income

Low and
middle income

Lower
middle
income

Low
income

2005 37.01 10.73 0.27 1.14 0.55 0.09

2030 SSP1 70.28 83.63 0.95 5.93 2.67 0.58

SSP2 62.28 66.36 0.84 5.06 2.29 0.47

SSP3 70.28 83.63 0.95 5.93 2.67 0.58

2050 SSP1 95.07 136.08 1.95 14.90 8.69 2.72

SSP2 85.06 101.78 1.64 11.27 6.33 1.71

SSP3 68.63 76.92 1.46 7.96 4.51 1.11
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Mapping Global GDP Exposure to Drought

Fubao Sun, Tingting Wang, and Hong Wang

1 Introduction

Accumulative evidences have shown that anthropogenic
climatic changes are already influencing the frequency,
magnitude, and duration of droughts (Mann and Gleick
2015). Severe drought events during the past decades, e.g.,
the East Africa drought, the California drought, and a series
of severe drought events recently in southern China have
profound impacts on global and regional water resources,
agriculture activities, and the ecosystem (Wada et al. 2013),
and have resulted in huge losses to the society. The climate
warming has intensified the magnitude and severity of
drought conditions, posing considerable economic, societal,
and environmental challenges globally (Carrão et al. 2016;
Su et al. 2018; Ahmadalipour et al. 2019; Gu et al. 2020;
Cook et al. 2020). Drought losses have significantly
increased in recent years, for a range of reasons, including
nonclimatic factors around the world. Enhanced drying has
been observed and projected over many land areas under a

warming climate, due to increasing atmospheric concentra-
tions of greenhouse gases. In the context of climate change,
drought exposure is likely to increase in many historically
drought-prone regions (Dai 2011; Liu et al. 2020; Su et al.
2018). A better understanding of changes in global drought
characteristics and their socioeconomic impacts in the
twenty-first century should feed into long-term climate
adaptation and mitigation plans.

With expected increases in widespread severe drought
events and rapid socioeconomic development, more GDP
will be exposed to droughts, resulting in higher drought risks
and more potential GDP losses in the future. Exposure of
socioeconomic activities is one of the most important aspects
of drought risk assessment (Su et al. 2018). The changing
vulnerability, exposure of socioeconomic activities to cli-
mate extremes are driving a need to move beyond admin-
istrative unit-based analyses to enable flexible integration
with spatially explicit datasets of population and economic
systems of long-term SSPs (Jones et al. 2015; Chen et al.
2017; Su et al. 2018; Liu et al. 2018; Liu et al. 2020). Yet,
the existing analyses are very limited and mainly focused on
the population exposure to droughts, and the magnitude of
drought impacts on GDP in a warming climate is poorly
addressed across the globe.

Hence, the GDP exposure to droughts, especially to severe
and extreme droughts, across the globe from baseline period
(1986-2005) and future scenarios (2016–2035 and 2046–
2065) was estimated and quantified based on the general
circulation models (GCMs) from the Institute of Atmospheric
Physics, Chinese Academy of Sciences, and the GDP data
from the Institute of Geographic Sciences and Natural
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Resources Research of the Chinese Academy of Sciences.
The GDP exposure to droughts is mapped at the grid level.

2 Method

2.1 Drought Estimation

The Palmer Drought Severity Index (PDSI) is a simple water
balance model originally designed by Palmer under the
framework of water balance between water supply and atmo-
spheric evaporative demand (Palmer 1965), and is estimated
by the difference between monthly precipitation, potential
evaporation, and some other parameters. There were 13 out of
21GCMs in CMIP5 (CoupledModel Intercomparison Project
phase 5): CanESM2, CNRM-CM5, CSIRO-Mk3-6–0,
GFDL-CM3, GFDL-ESM2M, IPSL-CM5A-MR, MIROC5,
MIROC-ESM, MIROC-ESM-CHEM, MPI-ESM-LR, and
MPI-ESM-MR under each of three Representative Concen-
tration Pathway (RCP) scenarios, i.e., RCP2.6, RCP4.5 and
RCP8.5, collected and used here.

The precipitation, maximum temperature, and minimum
temperature from above GCMs for both historical period
(1986–2005) and future of the 2030s (2016 –2035) and the
2050s (2046–2065) under the RCP 2.6, RCP4.5, and
RCP8.5 scenarios were obtained for PDSI calculation. The
degrees of droughts are identified by PDSI values below a
threshold value (PDSI < −1): PDSI � −1 represents nor-
mal conditions, PDSI in the range of [−2, −1) as mild
drought, [−3, −2) as moderate drought, [−4, −3) as severe
drought, and PDSI < −4 as extreme drought. Drought fre-
quency is the times of each classification per grid cell in the
selected 20-year period for all GCMs.

2.2 GDP Exposure to Droughts

The GDP exposure to varying degrees of droughts is defined
as the GDP that is exposed to normal conditions, mild,
moderate, severe, and extreme droughts, i.e., the frequency
of each class multiplied by the GDP values exposed per grid
cell for both the historical period and the future periods
under the three RCP and SSP scenarios. For example, the
global GDP in 2030 of SSP1 was multiplied by normal
condition, mild, moderate, severe, and extreme drought
frequencies per grid cell, respectively, under the RCP2.6
scenario to estimate the corresponding GDP exposure to
each degree of drought in the 2030s at a spatial resolution of
0.25 degrees. The ensemble mean of GDP exposure of all
GCMs was adopted in our analysis.

The unit of GDP exposure to droughts is purchasing
power parity (PPP) in 2005 USD, which ensures spa-
tiotemporal comparisons of substantial long-term changes of
climate and economic activities for both the historical period
and the future projections under different climate change and
socioeconomic scenarios.

3 Results

The global GDP exposure to normal (no drought), mild,
moderate, severe, and extreme droughts is shown in Fig. 1,
and the proportions of GDP exposure to severe and extreme
droughts by gross national income (GNI) per capita at 2019
level provided from the World Bank high-income countries
(� 52,412 GNI per capita), upper middle income countries
(� 17,196 GNI per capita), middle income countries
(� 11,934 GNI per capita), low and middle income
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Fig. 1 Global GDP exposure to
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countries (� 10,937 GNI per capita), lower middle income
countries (� 6761 GNI per capita), and low income coun-
tries (� 2458 GNI per capita) are shown in Fig. 2.

There is about 70% of global GDP exposed to normal
conditions and less than 5% exposed to severe and extreme
droughts for the historical period and the 2030s and the
2050s under SSP1–3 and RCP2.6, RCP4.5, and RCP8.5
scenarios. The global GDP exposure to severe droughts will
be as high as about 2.8 –3.6 billion USD, and the GDP
exposure to extreme droughts will be about 0.5–1.1 billion in
the 2030s for SSP1–3, respectively. Furthermore, the GDP

exposure to severe and extreme droughts increases in the
2050s, with exposure of 1.5 to 2.1 times for severe droughts
and 1.7 to 2.3 times for extreme droughts for SSP1 –3
compared to their 2030s values (Fig. 1).

The GDP exposure to severe and extreme droughts
depicts major differences around the globe (Fig. 2). The
statistics show that the GDP exposure to droughts is the
highest in upper middle income countries but the lowest in
low income, lower middle income, and low and middle
income countries.

(a)

(b)

Fig. 2 Global GDP exposure (%) to severe droughts (a) and extreme droughts (b) by gross national income (GNI) for the historical period and the
2030s and 2050s under SSP1–3 and RCP2.6, RCP4.5, and RCP8.5 scenarios
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Mapping Global Crop Distribution

Yaojie Yue, Peng Su, Yuan Gao, Puying Zhang, Ran Wang,
Anyu Zhang, Qinghua Jiang, Weidong Ma, Yuantao Zhou,
and Jing’ai Wang

1 Introduction

The latest special report from the Intergovernmental Panel
on Climate Change (IPCC), published in 2018 (Anandhi
et al. 2016), estimates a 1.5 °C increase in global tempera-
ture in 2040 at the current rate of global warming. Such a
rise has serious implications for major cereal crop cultiva-
tion: unless crop varieties adapted to higher temperatures
become available, the areas suitable for cropping are bound
to shift in the future. Therefore, to safeguard food security,
we need to predict such changes in spatial and temporal
terms, which can intuitively reflect the potential distribution
of crops under different climate change scenarios and for
different time periods, helping to reduce losses according to
local conditions (Deng et al. 2009).

Species distribution models (SDMs) have been widely
applied in evaluation of land suitability for crop cultivation and
the potential distributions of some cereal crops under climate
change scenarios (Stansbury and Pretorius 2001; Subbarao et al.
2001; Sun et al. 2012; He and Zhou 2016; Shabani and Kotey
2016), but socioeconomic scenarios have rarely been considered.
As an important part of the atlas, the maps of global crop dis-
tribution were produced to show the potential distribution of
major cereal crops, including wheat, maize, and rice, under the
influence of global climate change. These maps cover global
distribution of wheat, rice, and maize in the 2000s (baseline
period), 2030s (near term), and 2050s (medium term) under the
RCP2.6, RCP4.5, and RCP8.5 scenarios.

2 Method

2.1 Wheat Distribution Prediction Method

Environmental variables: This study considered that the
cultivation of wheat is affected by climate and soil (Motuma
et al. 2016). Hence, on the basis of previous research, we
established an environmental variables system, including the
following variables: � 0 °C cumulative temperature, annual
precipitation, annual average temperature, average temper-
ature of the coldest month (Sun et al. 2012; Wang et al.
2016), pH, drainage, conductivity, exchangeable sodium
percentage, soil property, and soil depth (Wandahwa and
Van Ranst 1996; Mendas and Delali 2012; Wang et al.
2016). Considering that terrain has a great influence on the
convenience of wheat cultivation, this study also chose slope
as an environmental variable.

Samples: According to the Harvested Area and Yield for
175 Crops of Year 2000 (Monfreda et al. 2008), 15,500
samples, which accounted for approximately 5% of all grids,
were selected. A total of 75% of these samples were used for
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model training and the remaining 25% were used for
validation.

The Maxent model was trained to predict future land
suitability for wheat cultivation for the 2000s, 2030s, and
2050s under different future climate scenarios. The specific
process of modeling can be found in Yue et al. (2019).

2.2 Rice Distribution Prediction Method

The Maxent model combines the data on the presence of a
given species within a grid with environmental variables rep-
resenting different environmental gradients within that grid to
determine whether the area is suitable for a particular species.
The overall research framework for the study is shown in Fig. 1.

Environmental variables and Samples: After the selection
of sample points and environment variables, a total of 2228
samples and 17 environmental variables were used in pre-
dicting future suitable areas for rice cultivation.

The Maxent model was trained to predict future land
suitability for rice cultivation for the 2000s, 2030s, and
2050s under different future climate scenarios. In order to
reduce errors, the simulation was run for 30 times, and
the average result was used as the final result. The
specific process of modeling can be found in Su et al.
(2021).

To more realistically represent future global rice cul-
tivation distribution, this study also considered the bal-
ance of the supply and demand of rice among countries.
On the supply side, we used suitability changes to predict
the initial rice harvest area as the starting value of the
extended simulation. The rice harvest area was adjusted
by comparing the countries’ rice supply and demand. If
the supply exceeded demand, we reduced the rice harvest
area, and vice versa. Besides, we calculated irrigated and
non-irrigated areas separately. This model can be
expressed as a multi-objective optimization model (Eqs.
1–4).
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Fig. 1 Research framework for predicting rice suitability. RCP = Representative concentration pathways; ROC = Area under the curve
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D ¼ Sþ I ð1Þ
where D, S, and I represent the countries’ rice demand,
supply, and net import, respectively,

Ai;rice �Ai;c3 ð2Þ
where Ai;rice, Ai;c3; respectively, represent the rice harvest
area and C3 crop harvest area of the ith grid.

X
Ai;nþ 1 � Sui
� �

>
X

Ai;n � Sui
� � ðn ¼ 1; 2; 3. . .Þ ð3Þ

where n is the number of iterations, n = 1 is the initial sit-
uation inferred from the change in the suitable area, and Su is
the suitability.

IrFAO ¼
P

Ai;IrP
Ai;rice

ð4Þ

where IrFAO is the national rice irrigation rate predicted by
FAO and Ai;Ir, Ai;rice are the rice irrigation area and rice
harvest area in grid i. Finally, socioeconomic changes in
crop planting are mapped in the atlas to reflect the adjusted
global distribution of rice cultivation.

2.3 Maize Distribution Prediction Method

Applying the same prediction method using the Maxent
model and following the procedure described in Fig. 1, we
selected 5548 maize sample points and 16 environment
variables to predict the potential distribution of maize. Then
we redistributed maize cultivation among countries on the
basis of natural maize potential distribution by following the
redistribution method of rice cultivation.

3 Results

3.1 Latitudinal Distribution of Crops

The latitudinal distributions of the cultivated areas of the
three crops in the historical period (red bar) and the RCP8.5
scenario (blue bar) are shown in Fig. 2.

During the two study periods, the three crops are culti-
vated mainly in the northern hemisphere. The most impor-
tant areas for wheat, rice, and maize planting are between
20°N–60°N, 20°N – 30°N, and 30°N–60°N, respectively.
The comparison of the planting areas in the two periods
shows that under the RCP8.5 scenario, the cultivated areas
of the three crops in the northern hemisphere will move to
higher latitudes and the cultivated areas of rice and maize
will have a significant increase.

3.2 Country Distribution of Crops

Figure 3 shows the ranking of the top 20 countries based on the
statistics of the cultivated areas of the crops in each country in
the historical period and under the RCP8.5 scenario.

In both periods, China’s wheat planting area is the largest
globally, followed by the United States and Russia. Rice
planting area is the largest in India, and China’s rice planting
area is the second largest and much larger than other
countries. Maize planting area is the largest in the United
States, and China has the second largest maize planting area.
In both time periods, China’s wheat, rice, and maize planting
areas are all among the highest globally. On the other hand,
in the future once the high temperature for crops intensifies,
China will also face greater losses than other countries.
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Fig. 2 Latitudinal distribution of the cultivated areas of wheat, rice, and maize (unit: million ha)
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Fig. 3 Ranking of the top 20 countries by cultivated area of wheat, rice, and maize (unit: million ha)
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Mapping Global Crop Exposure to Extremely
High Temperature

Yaojie Yue, Peng Su, Yuan Gao, Puying Zhang, Ran Wang,
Anyu Zhang, Qinghua Jiang, Weidong Ma, Yuantao Zhou,
and Jing’ai Wang

1 Introduction

The increasing temperature with global warming will have
great impacts on major cereal crop cultivation (Peng et al.
2004; Fahad et al. 2019). Among various impacts, the crop
exposure to extremely high temperature, which is based on
the land suitability for crop cultivation, may ultimately pose
a great threat to food security.

The crop disaster exposure is one of the primary drivers
of food system instability (Change 2018), and its response to
climate change is critical to understanding the impact of
climate change on food security. Recent studies have pro-
vided evidence for changes in the yield of major cereal crops
due to disaster exposure and identified significant impacts of
climate change globally, either at the country level or at the
0.5° grid level (Osborne and Wheeler 2013; Iizumi and
Ramankutty 2016). However, from the perspective of dis-
aster exposure, research on crop exposure to certain hazards

(e.g., extreme heat) with the changes of climate and social
conditions is still lacking.

As an important part of the atlas, the maps of global crop
exposure to extremely high temperature are intended to evaluate
the changes in theglobal staple cropyield risk fromthree aspects
—mean yield, interannual yield variability, and lower extreme
yield—under the RCP2.6-2030s, RCP2.6-2050s, RCP4.5-
2030s, RCP4.5-2050s, RCP8.5-2030s, and RCP8.5-2050s
scenarios. The crop yield risk was measured by multi-model
ensemble (MME) simulation using global high spatial resolu-
tion (0.25°) climate forcing data. To enable such MME simu-
lation, the development of emulators of global gridded crop
models (GGCM) is required (Lobell and Burke 2010; Holz-
kämper et al. 2012; Oyebamiji et al. 2015; Raimondo et al.
2020). The present results may provide crucial information for
climate risk assessment and effective adaptations.

2 Method

2.1 Wheat Exposure Calculation

The quantification process of wheat exposure to extreme
high-temperature hazard is as follows (Jiang et al. 2019): A
high-temperature day is recorded when the maximum tem-
perature of the current day reaches or exceeds 30°C, and if
this lasts for 3 days or more, it is recorded as a heatwave
event (Deng et al. 2009; Chen et al. 2016).

The high-temperature days (HD) refer to the accumula-
tion of total high-temperature days of heatwave events in
each grid. The calculation formula is as follows:

HD ¼
Xn
i¼1

Di ð1Þ
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where n refers to the frequency of heatwaves and Di refers to
the days corresponding to the ith heatwave event.

Estimating the intensity of the heatwave hazard impacts
on wheat involves first calculating the intensity (I), which
represents the daily maximum temperature exceeding the
temperature threshold (30°C) of each high-temperature day
within heatwave events and for each grid; then, we sum up
all Is. The details of this calculation are as follows:

HI ¼
Xdm

dh
I ð2Þ

I ¼ 0Tmax\Th

Tmax � ThTmax � Th

�
ð3Þ

where dh and dm represent the heading period and mature
period of wheat, respectively; Tmax represents the daily
maximum temperature; I represents the daily temperature (°
C) exceeding the temperature threshold during heatwave
events; and Th represents the high-temperature threshold.

The extreme high-temperature exposure of wheat is cal-
culated as follows: The exposure range of wheat is the
spatial superposition of the distribution range of wheat and
the hazard range, and the areal value in the range represents
the exposure value, which is the annual wheat harvest area.

2.2 Rice Exposure Calculation

The quantification process of rice exposure to extreme
high-temperature hazard is as follows: A high-temperature
event is recorded when the maximum temperature of the
current day reaches or exceeds 30 °C (Melillo et al. 1995;
Janetos 1997). The accumulative high-temperature stress of
high-temperature events during the growth period (GHTS)
was used as the high-temperature hazard intensity. The
calculation process can be divided into two steps: (1) ac-
cording to the abovementioned high-temperature standard,
determine the high-temperature event and calculate the
high-temperature stress (HTS) of the day, and then estimate
the GHTS by calculating the total HTS during the whole
growth period (Eqs. 4 and 5).

HTSi ¼
0Ti � 30�C

1� sin p
2 � Ti�Tb

To�Tb

� �h i
Ti � 30�C

(
ð4Þ

GHTS ¼
Xn
i¼1

HTSi ð5Þ

where Ti is the daily average temperature of the ith
high-temperature event during the growth period; Tb is the
base temperature during the growth period; To is the opti-
mum temperature during the growth period; n is the fre-
quency of high-temperature events during the growth period;
and HTSi is the daily high-temperature stress value of the ith
high-temperature event.

The extreme high-temperature exposure of rice is calcu-
lated as follows: The exposure range of rice is the spatial
superposition of the distribution range of rice and the hazard
range, and the areal value in the range represents the expo-
sure value, which is the annual rice harvest area.

2.3 Maize Exposure Calculation

Maize exposure calculation applies the same method as rice
exposure calculation. A high-temperature event is recorded
when the maximum temperature of the current day reaches
or exceeds 37 °C (Melillo et al. 1995; Janetos 1997). The
accumulative high-temperature stress of high-temperature
events during the growth period (GHTS) was used as the
high-temperature hazard intensity.

The extreme high-temperature exposure of maize is cal-
culated as follows: The exposure range of maize is the
spatial superposition of the distribution range of maize and
the hazard range, and the areal value in the range represents
the exposure value, which is the annual maize harvest area.

3 Results

3.1 Latitudinal Distribution of Crop Exposure
to High Temperature

The latitudinal distributions of the exposure of the three
crops to high temperature in the historical period (red bar)
and the RCP8.5-SSP3 scenario (medium term) (blue bar) are
shown in Fig. 1.

During the two study periods, the exposures of the three
crops are mainly concentrated in the northern hemisphere.
The most important areas for wheat, rice, and maize expo-
sure to extreme high temperature are between 40°N–50°N,
20°N–30°N, and 40°N–50°N, respectively. The comparison
of the exposure areas in the two periods shows that under the
RCP8.5-SSP3 scenario, the exposure areas of the three crops
in the northern hemisphere will move to higher latitudes and
the exposure areas of rice and maize will have a significant
increase.
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3.2 Countries Distribution of Crop Exposure
to High Temperature

Figure 2 shows the ranking of the top 20 countries based on
the statistics of the area of crop exposure to high temperature
in each country in the historical period and under the
RCP8.5-SSP3 scenario.

In both periods, the United States’ wheat exposure area
ranks the highest, followed by China. The rice exposure area
of India ranks the highest, and China’s rice exposure area is

the second largest. The maize exposure area of the United
States ranks the highest, and China’s maize exposure area is
the second largest. Under the RCP8.5-SSP3 scenario, the
exposure area of all crops in China will increase, and the
exposure area of rice is about three times that of the his-
torical period. It indicates that China will be seriously
exposed to extreme high temperature in the future, and the
country should be prepared to prevent risks and reduce
losses.

Rice

Maize

Wheat

Fig. 1 Latitudinal distribution of
the exposure of wheat, rice, and
maize to extreme high
temperature (unit: million ha)
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Fig. 2 Ranking of the top 20
countries by the area of crop
exposure to extreme high
temperature (unit: million ha)
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Mapping Global Industrial Value Added

Wei Song, Huiyi Zhu, Han Li, Qian Xue, and Yuanzhe Liu

1 Background

In the research of identifying the impact of climate change
on the industrial economic system, the core step is to overlay
climate data and industrial economic data with the same
spatiotemporal resolution and perform spatial analysis (Zhao
et al. 2017). However, the risk assessment of the industrial
economic system is hampered by the lack of spatialized
datasets of global and Chinese industrial economic system
output value, especially under future climate scenarios,
because it is difficult to accurately identify the output value
of secondary and tertiary industries by conventional remote
sensing methods. The existing spatial data of industrial
economic system output value are mostly at the provincial,
city, and county levels, with administrative areas as the
smallest spatial units, which cannot represent the difference
and spatial distribution of industrial output value within a
province or a city. Therefore, it is difficult to carry out
overlay analysis with gridded climate data in risk assess-
ment. Although there are some spatialized data on the output
value of a particular industry from research (Dong et al.

2016), in general, there is a lack of large-scale,
high-resolution, and comprehensive spatial data of industrial
output value.

Currently, the research methods of mapping economic
data can be divided into three categories: spatial interpola-
tion model (Tobler 1979), multi-source data fusion model
(Li et al. 2018), and remote sensing inverse model (Wang
et al. 2018). Compared with other spatial models, the
nighttime light remote sensing data inversion model is
characterized by simple implementation and high precision
and is expected to solve the problem of large-scale data
localization. However, the model is mainly used to analyze
gross domestic product (GDP) and population data. Based
on the existing applications, this study developed a method
to spatialize the industrial output on a global scale, and the
random forest algorithm in machine learning was used to
map the industrial value added under different climate
change scenarios in the future.

The definition of industrial value added is based on the
World Bank’s statistical standards. The industrial value
added covers mining, manufacturing, construction, electric-
ity, water, and gas sectors. Industrial value added statistics
data are from the World Bank, and the data are in current U.
S. dollars.

2 Method

The method for mapping industrial value added for future
climate scenarios includes the following steps: (1) Mapping
the current industrial value added; (2) Simulating the spatial
boundary of future industrial value added; and (3) Estimating
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the future industrial value added. Figure 1 shows the tech-
nical flowchart for mapping industrial value added.

2.1 Mapping the Current Industrial Value
Added

Based on the 2010 global vegetation index data (Enhanced
Vegetation Index, EVI, from MODIS) and the 2010 night-
time light remote sensing data (from DMSP/OLS), the
adjustment nighttime light index (ANLTI) was constructed
to preprocess the light saturation and overflow phenomena
of nighttime light data, and the best light data in the world
was obtained. The calculation formula is as follows (Zhuo
et al. 2015):

ANLTI ¼ 2
1� NTn þEVI

� NT ð1Þ

ANLTI is the EVI adjusted nighttime light index, NTn is
the normalized nighttime light value, and NT is the original
nighttime light value.

A regression model of the industrial value added was
constructed using the adjusted nighttime light index
(ANLTI) and industrial value added statistical data of
countries from the World Bank. The data of global industrial
value added in 2010 is generated using the following
formula:

I ¼ Ii � ANLTI
ANLTIi

ð2Þ

I is the industrial value added of each pixel. Ii is the total
industrial added value of the country in which the pixel is
located, and ANLTIi is the total EVI adjusted nighttime light
index of the country in which the pixel is located.

In the global scope, statistical industrial value added in
178 provincial (state) regions were randomly selected for the
correlation test, and the correlation coefficient is 0.93. Tak-
ing statistical data as the true values, the average accuracy of
industrial value added in the 178 regions is 80.14% (Xue
et al. 2018).

2.2 Simulating the Spatial Boundary of Future
Industrial Value Added

Future industrial value added changes can be approximated
by starting with industrial land use change. According to the
principle of logistic–cellular automata (CA)–Markov simu-
lation, the global land use data from ESA (European Space
Agency, https://maps.elie.ucl.ac.be/CCI/viewer/index.php)
in 2010 and 2015 were used to simulate the land use change
in 2030 and 2050. The urban land was extracted as the
spatial boundary of the future industrial added value. In the
selection of driving factors, it is necessary to comprehen-
sively describe the impact of different driving factors on land
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use change, and consider the research scale. Elevation, slope,
population, GDP, and distance from river and road are
selected as driving factors of land use. The data are from
NOAA (National Oceanic and Atmospheric Administration,
https://www.noaa.gov/), SEDA (Socioeconomic Data and
Applications Center, https://sedac.ciesin.columbia.edu/),
Global Risk Data Platform (https://preview.grid.unep.ch/),
and Natural Earth (https://www.naturalearthdata.com/). The
accuracy of the simulated land use in 2015 is verified by
using the global land use data in 2015. The global average
accuracy is 91.89%.

The logistic–CA–Markov model is mainly used in the
simulation of land use change by combining the character-
istics of the logistic regression model, the CA model, and the
Markov model (Jamal et al. 2013). The logistic regression
model can analyze the relationship between land use types
and driving forces. The CA model can effectively simulate
the spatial changes of the land use system and the Markov
model can predict the quantitative changes of land use types
so as to simulate land use changes more comprehensively
and accurately.

2.3 Estimating Future Industrial Value Added

For the spatialization of industrial added value under dif-
ferent climate change scenarios in the future, appropriate
factors of industrial added value change need to be selected.
In order to determine the influencing factors of spatial
change of industrial value added, land use, population den-
sity, and accessibility of the study area should be compre-
hensively considered. In addition, the distribution of rivers
and lakes, and topographic features such as elevation and
slope should be considered. Due to the many influencing
factors, the ordinary regression model is difficult to com-
prehensively and accurately reflect the spatial distribution
characteristics of the industrial added value under different
climate change scenarios. Therefore, this study is based on
machine learning, combined with the random forest model to
build a spatial model of industrial added value under dif-
ferent climate change scenarios and the model is as follows
(Xue and Song 2020):

F ¼ T ;P;GDP;Land; Slope; Pop. . .ð Þ ð3Þ
where F represents simulation results under different climate
change scenarios, T represents average annual temperature,
P represents average annual precipitation, GDP represents
the gross domestic product, Land represents the spatial

boundary of future industrial value added, and Pop repre-
sents the density of population.

The driving factors used to build the random forest model
include industrial value added in 2010, the spatial distribu-
tion of urban land, elevation, slope, distance from rivers,
distance from roads, distance from railroads, distance from
residential settlements, and air temperature and precipitation
(representing different climate change scenarios). When
mapping the future industrial added value under different
climate change scenarios, these driving factors are constant
except for temperature and precipitation.

Based on the comprehensive consideration of the fitting
speed and accuracy of the model, the parameters of the
random forest model were tested. Finally, we built a total of
100 decision trees. In each decision tree, 90% of the samples
were randomly selected to build the sample model, and the
remaining 10% were used as test data. The simulation results
show that the sample accuracy was 0.94 and the test sample
accuracy was 0.81. The overall sample accuracy was rela-
tively high, which can well explain the influence of various
factors on the industrial value added, so it can be used for the
simulation and prediction of industrial added value.

Through the statistics of the proportion of industrial value
added in GDP (from the World Bank) and the GDP data
under the Shared Socioeconomic Pathways (SSPs), the
industrial added value of each country under different SSP
scenarios in the future was obtained. According to the esti-
mated proportion of industrial value added of each country
and the proportion of industrial value added of each country
under different SSP scenarios in the future, the regression
model was constructed. Finally, the distribution of industrial
added value under SSP1, SSP2, and SSP3 scenarios in 2030
and 2050 was obtained.

3 Results

The industrial value added under different future climate
change scenarios was calculated by continent. Then we
derived the statistical value of industrial value added of each
continent under SSP1, SSP2, and SSP3 scenarios in 2010,
2030, and 2050 (Fig. 2). Overall, in the future, the industrial
value added will increase obviously. Compared with other
regions, Asia has the largest industrial value added, followed
by North America, Europe, Africa, and South America, and
Oceania has the smallest industrial value added. The
industrial value added of SSP1 was the biggest, followed by
SSP2, and the smallest was SSP3.
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Fig. 2 Industrial value added under the Shared Socioeconomic Pathway (SSP) 1, SSP2, and SSP3 scenarios in 2030 and 2050
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Mapping Global Road Networks

Wenxiang Wu and Lingyun Hou

1 Introduction

Various studies have put forward different methods for
reasonably determining the development scale of regional
road networks according to the economic development and
traffic conditions of each country, and formed some con-
ventional methods for projecting the future scale of road
networks, such as land coefficient method, elastic coefficient
method, time series method, connectivity analysis method,
and generalized cost method. Most of the methods are based
on the analysis of the existing data to derive the development
pattern so as to determine the road network scale in a future
year. The factors related to road network scale are land use
type, economic development, and population growth. The
object of this study is the global road system. In view of the
large spatial scale of the research object, we selected the land
coefficient method that is suitable for large-scale projection
for future global road network scale.

In order to evaluate the response of the global road sys-
tem to climate change and accurately explain the current
global road spatial distribution characteristics, we spatially
processed the current global road length data (2010) and
produced the global road length raster data with 0.5° reso-
lution (i.e., roads in kilometers per 0.5° � 0.5° grid).

In order to accurately assess the impact of climate change
on the road system in the future, we used the collected data
of total road length, population, area, and per capita GDP of
countries over the years to project the global road lengths
under different Shared Socioeconomic Pathways (SSPs) in
2030 and 2050 by using the land coefficient method and
finally obtained the global road length data with 0.5° reso-
lution under different SSPs in 2030 and 2050.

The dataset is about the global road network distribution,
which is represented by the road length index, that is, the
total length of roads in an area. It covers 166
countries/regions, reflecting the detailed spatial distribution
of current and future roads in the world and improving the
resolution from the national scale of the current projected
global road data to 0.5°.

2 Data

In this study, the global road spatial distribution vector data
were used to spatialize the current global roads; the historical
road mileage, population, per capita GDP, and land area of
various countries were used to fit the national land coeffi-
cient model, and the future global road spatial distribution
was simulated and calculated by combining the population
and economic data predicted by SSPs.

2.1 Global Road Distribution Data

We compared the global road dataset published by the
Center for International Earth Science Information Network
of Columbia University (https://sedac.ciesin.columbia.edu),
DIVA-GIS road data system hosted by Robert J. Hijmans
(http://dwww.diva-gis.org), and OpenStreetMap (https://
www.openstreetmap.org). For regions of China, we also
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considered the data of road distribution provided by the
Resource and Environment Sciences and Data Center of the
Institute of Geographic Sciences and Natural Resources
Research, Chinese Academy of Sciences (http://www.resdc.
cn). Considering the accuracy, comprehensiveness, and
coverage of road data, and combined with online electronic
maps such as Google Earth maps, the current global road
distribution data were integrated as the basic data of global
road data spatialization.

2.2 Historical Data of Population, per Capita
GDP, and Regional Area and Road Length

The historical data of China’s population, per capita GDP,
and regional area and road length used in this study are from
the provincial data of China Statistical Yearbook published
by the National Bureau of statistics. Some of the statistical
data are at the prefecture level, published in the provincial
statistical yearbooks, and the time span is 1986–2016. The
data of population, per capita GDP, and land area of other
countries are from the world development indicators
released by the World Bank (https://databank.worldbank.
org/home.aspx). The total road length data are mainly from
the World Bank (https://data.worldbank.org.cn) and the
International Road Federation (https://www.irf.global) and
supplemented by ASEAN statistical yearbook (https://www.
aseansec.org). The time span is 1989–2014.

2.3 Shared Socioeconomic Pathways Data

This study projected the global road distribution in grids under
SSP1, SSP2, and SSP3 scenarios in 2030 and 2050. The
population and GDP forecast data used are derived from the
global population and GDP data with 0.5° resolution under the
SSP1–SSP5 scenarios produced by Jiang et al. (2017). The
original 0.5° resolution population forecast data are from the
global and national population data released by the Interna-
tional Institute for Applied Systems Analysis (IIASA), and the
economic forecast data are from the GDP data provided by the
Potsdam Institute for Climate Impact Research(PIK).

3 Method

For the production of the current global road length data, the
current global road spatial distribution pattern was taken as
the basis, and the global road length data with administrative
regions as the basic statistical unit were disaggregated into
the grids so as to realize the spatialization of global roads

and obtain the global road spatial distribution data of 0.5°
grid.

This study mainly estimated the future global road net-
work distribution based on the land coefficient method,
which considers that road length is directly proportional to
the square root of population and area and the economic
index coefficient of the area where the road network is
located. The method can be used to calculate the reasonable
theoretical road length in an area (Guo 2005). The calcula-
tion formula is as follows:

L ¼ K �
ffiffiffiffiffiffiffiffiffiffi
P � A

p
ð1Þ

where K is road network coefficient/economic coefficient;
P is population (unit: 10,000 people); A is area (unit: 100
km2); and L is road length.

The economic coefficient, population, and area in the
model directly reflect the three most important influencing
factors of the road network scale, which has strong practi-
cability, and the results can reflect the actual demand of the
projected area. Among the three parameters, the economic
coefficient K is calculated as follows.

First, the data of road length (Ln), population (Pn), and
area (An) over the years were used to calculate the economic
coefficient Kn:

Kn ¼ Ln=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn � An

p
ð2Þ

The relationship between per capita GDP (Gn) and the
calculated Kn is obtained through regression:

Kn ¼ aþ b � Gn ð3Þ
where a and b are regression coefficients.

Using the land coefficient method and the historical data
of road length, population, per capita GDP (economic
coefficient K), and (regional) land area, we simulated the
relationship between road length and socioeconomic factors.
Combined with different SSPs scenarios in the future, the
global road length data in 2030 and 2050 were obtained
(Fig. 1).

4 Results

A comparison of the current and future road lengths of the
10 countries with the longest total road mileage in the world
in 2010 indicates that the change of road length in the
developed countries represented by the United States is very
small and that in the developing countries such as India and
China is relatively large (Fig. 2).
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A comparison between Western Europe, northeastern
United States, and the Bohai Rim of China indicates that the
growth rate of road length in the Bohai Rim area is the
highest, with clear differences under different SSPs and by
different future years; while the growth rate of road length in
Western Europe and the northeastern United States is not
obvious, especially in the northeastern United States, which
is similar to the current (2010) road length. The growth rate
and trend of China’s roads are similar to that of Asia as a
whole, showing a high growth rate, and the growth rate varies
significantly under different SSPs and by different years.

The total length of roads in all countries will increase
significantly by 2030 and 2050. By 2030, the global total
length of road will be about three times of the current (2010)
total length, and by 2050, it will be about four to five times of
the current level; the growth rate of the United States and
Western Europe is the lowest, while that in Asia is the highest,
especially in India and China. Under the sustainable devel-
opment pathway SSP1 scenario, the growth of road network
scale is the highest; under the regional competition pathway
SSP3 scenario with higher challenges of climate change, the
growth of road network scale is the smallest (Table 1).

AreasGDPPopulationHistorical Data

Land Coefficient Theory

Future global road network distribution

Road length

GDPPopulationScenario Data

Fitting

Simulating

Fig. 1 Technical flowchart of
mapping future road network

Fig. 2 Growth of road length of the top 10 countries with the longest total road mileage in 2010 under different Shared Socioeconomic Pathway
(SSP) scenarios by 2030 and 2050

Table 1 Growth scale of global
roads under the Shared
Socioeconomic Pathway (SSP) 1,
SSP2, and SSP3 scenarios by
2030 and 2050

SSP1 SSP2 SSP3

2030 3.02 2.88 2.71

2050 5.48 4.52 3.77
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Global Change Risks



Mapping Global Risk of Heatwave Mortality
Under Climate Change

Qinmei Han, Weihang Liu, Wei Xu, and Peijun Shi

1 Background

Global warming has become a severe problem worldwide,
where the average global temperature has steadily increased
over recent decades accompanied by the abnormally hot
weather (IPCC 2013). Since the 1950s, heatwave events
have increased in frequency, intensity, and duration and their
impact on human health will also increase under enhanced
global warming (Perkins-Kirkpatrick and Lewis 2020).
Heatwaves have become one of the most serious climate
events in the world. Exposed to heatwave is associated with
increasing mortality—for instance, the European heatwave
of 2003 induced more than 70,000 additional deaths in
France, Germany, Italy, Spain, and other countries (Robine
et al. 2008). For Russia as a whole, the death toll of the 2010
summer heatwave totaled 55,000 people (Barriopedro et al.
2011).

Considering the ever-worsening impact of heatwaves,
future projection of heat-related mortality under climate
change has been widely studied in recent decades. Heatwave
mortality shows an increasing trend under high-emission
scenarios (Huang et al. 2011), especially in temperate areas
(Gasparrini et al. 2017). Existed studies mainly focus on
regional-, country-, or city-level risk assessments, but the
distribution and variation of heatwave mortality risk at a

global scale need to be further quantitatively evaluated.
Mapping heat-related mortality and finding the hotspots will
help provide the policy recommendations at both global and
national levels.

This study examined future heatwave mortality risk of the
world at the grid level (0.25° � 0.25°) and country level,
respectively, based on the disaster system theory (Shi 1991,
1996, 2002), using the data of temperature and population
changes. We also evaluated the decadal mortality risk
change in the 2030s (2016–2035) and the 2050s (2046–
2065) as compared to the baseline period (1986–2005) using
high spatial resolution climate and population data under
different Representative Concentration Pathway (RCP) and
Shared Socioeconomic Pathway (SSP) scenarios, namely
RCP2.6-SSP1, RCP4.5-SSP2, and RCP8.5-SSP3. To esti-
mate the regional change, we adopted the regionalization
recommended by the Intergovernmental Panel on Climate
Change (IPCC), which divides the world into 26 regions.

2 Method

In this study, we used daily maximum temperature as the
metric to calculate heatwave. The daily maximum temper-
ature data were from the NEX-GDDP dataset, which was
released by the National Aeronautics and Space Adminis-
tration (NASA) in June 2015 (https://dataserver.nccs.nasa.
gov/thredds/catalog/bypass/NEX-GDDP/catalog.html). The
spatial resolution of the dataset is 0.25° � 0.25°. There are
21 general circulation models in this dataset that contain two
RCPs—RCP4.5 and RCP8.5—for the period from 1950 to
2100. The temperature data of lower emissions scenario
RCP2.6 was computed by sub-project 1. The population
projection data used in this study contain SSP1 − 3 com-
puted by sub-project 2. We calculated heatwave intensity
and mortality risk for the periods 2016–2035 and 2046–2065
in the future compared to 1986–2005 under the
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RCP2.6-SSP1, RCP4.5-SSP2, and RCP8.5-SSP3 scenarios
(Fig. 1). The maps shown in section 4 are multi-model
ensemble results.

2.1 Heatwave Intensity Metrics

To better estimate regional changes of heatwave mortality
risk in the world, we chose a relative threshold instead of an
absolute threshold. A heatwave event here was defined as at
least three consecutive days exceeding the given threshold,
which is the 95th percentile value of the daily maximum
temperature series over the baseline period 1986–2005 at the
grid level, and if the 95th percentile value was lower than
25 °C, we set 25 °C as the threshold in this grid. The annual
heatwave duration was defined as the total heatwave days in
a given year. The annual heatwave maximum temperature
was defined as the maximum temperature of all the heatwave
events in a year.

2.2 Population Vulnerability

In this study, six mortality vulnerability curves for typical
cities in the world were adopted (Gosling et al. 2007). In the
IPCC-SREX reports, the world is divided into 26 regions

(Seneviratne et al. 2012). We regrouped the 26 regions into 6
groups according to climate types, latitude zones, and terrain
elevation. Each vulnerability curve was applied to a group of
the IPCC-SREX regions to map heatwave mortality risk of
the world.

2.3 Mortality Risk Function

Heatwave mortality risk of the world is assessed with for-
mula (1):

R ¼ FðTmaxÞ � D� P ð1Þ

where R is the annual heatwave mortality risk, F repre-
sents the regional vulnerability function, Tmax refers to the
annual maximum temperature during heatwaves, P refers
to the annual total population of each grid, and D is the
annual heatwave duration (days). We computed the annual
heatwave mortality risk for the selected periods—1986–
2005, 2016–2035, and 2046–2065. To map the spatial
distribution, we then computed the 20-year average value
for each period. All calculations, analyses, and the figures
of the meteorological metrics and heatwave mortality risk
were performed and mapped at the grid level
(0.25° � 0.25°).
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Fig. 1 Technical flowchart for mapping global heatwave mortality risk under climate change
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3 Results

3.1 Heatwave Intensity

The results show that the spatial distribution of heatwave
mortality risk for the two periods (2030s and 2050s) under
the three scenarios (RCP2.6-SSP1, RCP4.5-SSP2, and
RCP8.5-SSP3) are very similar. For the maximum temper-
ature during heatwaves, regions with high values are dis-
tributed in North Africa, West Asia, India, and Oceania,
mainly near 23°N, and the temperature decreases from the
high value areas to the north and south, respectively.

Heatwave duration decreases from the equator to the
poles. The highest duration areas include Central Africa,
West Asia, Central Asia, Central South America, and
Oceania. The longest heatwave days are in Central Africa,
Indonesia, and northern South America. The areas with high
values in the 2050s are significantly larger than that in the
2030s under different scenarios.

Generally, global averaged heatwave duration during
1986–2005 are under 10 days per year, whereas it increases
to 28 days per year in the 2050s under the high-emission
scenarios.

3.2 Mortality Risk

High mortality risk areas for heatwaves are mainly dis-
tributed in the Northern Hemisphere including India

peninsula, West Asia, the Mediterranean area, and eastern
North America at the grid level. High latitudes in the
Northern Hemisphere are mainly of lower risk as compared
to the other regions. Overall, global heatwave mortality risk
for the baseline period (1986–2005) is about 289,576 per-
sons per year. In comparison, the annual average heatwave
mortality risk increases by 8 times, 5 times, and 8 times in
the 2050s under the RCP8.5-SSP3, RCP4.5-SSP2, and
RCP2.6-SSP1scenarios, respectively.

We performed the zonal statistics analysis of the risk
result at the continental level and the results show a sub-
stantial increase during the 2050s under the RCP8.5-SSP3
scenario. The heatwave mortality risk increases by 10 times
in Africa followed by 8 times in Asia and 6 times in South
America. There are 4-times, 4-times, and 3.5-times increase
of heatwave mortality risk in Europe, North America, and
Oceania, respectively, in the 2050s under the RCP8.5-SSP3
scenario.

The heatwave mortality risk at the country scale was also
derived and ranked. The top ten countries with high heat-
wave mortality are showed in Fig. 2. These countries are
mainly located in North Africa and West Asia, distributed
around 30°N. Compared to the baseline period, the heatwave
mortality risks of all countries increase significantly under
different scenario combinations, especially in the 2050s
(Fig. 2).

Fig. 2 Heatwave mortality risk of the top 10 countries. The error bar represents the one standard deviation across the 21 (13 for Representative
Concentration Pathway (RCP) 2.6) general circulation models and 3 shared socioeconomic pathways (SSPs)
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Mapping Global Risk of River Flood Mortality

Junlin Zhang, Xinli Liao, and Wei Xu

1 Background

Globally, river flooding induced by heavy rainfall frequently
causes fatalities every year (Jongman et al. 2015; CRED and
UNISDR 2018; CRED 2019). Particularly, heavy rainfall
will increase in the future with climate warming (Liao et al.
2019). This could lead to greater rain-induced local flooding
in some watersheds or regions (IPCC 2012). Besides,
exposed populations to floods are increasing with the
socioeconomic development (Jongman et al. 2015; Win-
semius et al. 2018; Liao et al. 2019).

Generally, river flooding risk assessment has two steps.
The first is to simulate river flooding hazard using hydro-
logical or hydrodynamic model and inundation model, and
the second is to calculate affected populations by overlaying
the population data and flood hazard maps, and the results
are used to assess the risk of affected population by floods
(Arnell and Gosling 2016; Lim et al. 2018). Projected future
precipitation and social-economic datasets provide a basis
for these studies. However, when assessing risks in the
population, most studies are concerned with the affected
population (Alfieri et al. 2015; Dottori et al. 2016; Wing
et al. 2018) and few studies concern mortality risks. Shi and
Kasperson (2015) and Jongman et al. (2015) assessed the
mortality risk using baseline mortality rate. Kinoshita et al.
(2018) simulated changing mortality vulnerability with time

to assess risks, but the vulnerability is measured by an index
rather than vulnerability functions that involve certain
physical processes. The difficulty of mortality risk research
is lacking proven vulnerability functions. In addition, many
studies focus on the risk at the country and regional levels,
lacking grid level high spatial resolution results.

In order to address the issues, this study assessed the
global mortality risks from floods by two main steps. The
first was to develop mortality vulnerability functions for all
countries by revising an existing vulnerability function.
Then future potential death tolls of the 2030s and the 2050s
were estimated at the 2.5' grid level under the Representative
Concentration Pathway (RCP) and Shared Socioeconomic
Pathway (SSP) scenarios of RCP4.5-SSP2 and
RCP8.5-SSP3. The results were compiled to produce the risk
maps at the 0.25° grid level and country level.

2 Method

Figure 1 shows the technical flowchart for mapping flood
mortality risk of the world. The study revised the existing
vulnerability functions by adjustment coefficient that is cal-
culated based on recorded death tolls. Then future death tolls
were estimated using predicted inundation data and popu-
lation data, and the adjusted vulnerability functions. Future
death tolls at the grid level were then aggregated to other
geographic units. Finally, the risk size and model uncertainty
are analyzed.

2.1 Estimation of Risks

2.1.1 Estimation of Losses for the Baseline Period
The mortality vulnerability function is represented by
Eq. (1) (Jonkman et al. 2008). Using the function, historical
death tolls were estimated by Eqs. (2) and (3).
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VðdÞ ¼ U
ln dð Þ � 7:60

2:75

� �
ð1Þ

where U is the cumulative normal distribution. d is the water
depth.

Lhis i j ¼ Vðdhis i jÞ � Shis j � fhis i j ð2Þ

Lhis ¼ 1
11� 20

X20
j¼1

X11
i¼1

Lhis i j ð3Þ

where i is the order of the 11 Atmosphere–Ocean General
Circulation Models (AOGCMs); j is the sequence of the
20 years; his is the baseline period (1986–2005); Lhis_i_j,
dhis_i_j, and fhis_i_j are the estimated death tolls, water depth,
and inundation fraction for the ith AOGCM in the jth year
for the baseline period, respectively; Shis_j is the population
size in the jth year of the baseline period; Lhis is the annual
average death tolls, that is, the multi-model ensemble for the
baseline period; V(d) is the vulnerability function.

2.1.2 Calculation of Adjustment Coefficients
The study revised the mortality vulnerability function
(Eq. 1) for countries to reduce the diversity of vulnerability
functions in different areas.

Population scenario 
data(SSP2, SSP3, 2016-2035,
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Fig.1 Technical flowchart for mapping global risk of river flood mortality. AOGCM = Atmosphere–Ocean General Circulation Model;
RCP = Representative Concentration Pathway; SSP = Shared Socioeconomic Pathway
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Using Eq. (4), the adjustment coefficients (Kc values)
were calculated for the countries with total recorded deaths
and estimated deaths both greater than zero during the
baseline period. On this basis, the adjustment coefficient is
the minimum of above calculated Kc values for the countries
with total recorded death tolls equal to zero during the
baseline period; and the adjustment coefficient is the average
of above calculated Kc values for the countries with total
recorded death tolls greater than zero but total estimated
deaths equal to zero.

Kc ¼
P20

j¼1 SLhis c j

Lhis c
ð4Þ

where Kc is the adjustment coefficient of country c; j repre-
sents the sequential number of the 20 years in the baseline
period; SLhis_c_j is the recorded death tolls of country c.

The adjusted vulnerability function is shown in Eq. (5).

AdjVc dð Þ ¼ Kc � V dð Þ ð5Þ

where AdjVc(d) is the adjusted vulnerability function of
country c.

2.1.3 Calculation of Future Losses and Change
Future death tolls of a grid in country c were estimated
according to Eq. (6), based on future predicted inundation
and population data and adjusted vulnerability function.
Next, the study averaged the results of 20 years for all
AOGCMs (Eq. 7) to compute uncertainties; then we aver-
aged the results of the 11 AOGCMs as the death tolls of the
2030s or the 2050s to reduce model uncertainties (Eq. 8).
Finally, the changes of death tolls from the baseline period to
future periods were calculated by Eq. (9).

Lfut i j ¼ AdjVcðdfut i jÞ � Sfut j � ffut i j ð6Þ

where Lfut_i_j, dfut_i_j, and ffut_i_j are the estimated death tolls,
water depth, and inundation fraction for the ith AOGCM in
the jth year for a future period, respectively; Sfut_j is the
population data in the jth year of a future period.

Lfut i ¼ 1
20

X20
j¼1

Lfut i j ð7Þ

where Lfut_i is the average death tolls of 20 years (2016–
2035 or 2046–2065) for the ith AOGCM.

Lfut ¼ 1
11

X11
i¼1

Lfut i ð8Þ

where Lfut is the death tolls of the 2030s or the 2050s for the
multi-model ensemble, which averaged the results from the
11 AOGCMs.

DL ¼ Lfut � Lhis ð9Þ

where ΔL is the change of death tolls for the 2030s or the
2050s relative to the baseline period.

2.2 Model Uncertainty

The result uncertainty of multi-models is measured by
standard deviation (Eq. 10) and coefficient of variation CV,
the ratio of SD to L in Eq. 10.

SD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP11

i¼1 Li � Lð Þ2
11

s
ð10Þ

where Li is the average death tolls of 20 years for the ith
AOGCM (Lhis_i or Lfut_i). L is the average death tolls of
20 years for the multi-model ensemble (Lhis or Lfut).

3 Results

Globally, the annual average death tolls of the 2030s are
approximately 21 thousand persons for the RCP4.5-SSP2
scenario and 23 thousand persons for the RCP8.5-SSP3
scenario; they increase 0.57 and 0.69 times relative to the
baseline period, respectively. The annual average death tolls
of the 2050s are approximately 26 thousand persons for the
RCP4.5-SSP2 scenario and 32 thousand persons for the
RCP8.5-SSP3 scenario; they increase 0.88 and 1.31 times
relative to the baseline period. The patterns of spatial dis-
tribution are similar for different scenarios; high-risk areas
are located in East Asia, South Asia, and Southeast Asia,
particularly in eastern coastal China and the Ganges River
Basin.
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Using zonal statistics of the death toll results, we calcu-
lated the annual average death tolls at the national level.
Figure 2 shows the annual average death tolls and errors
(measured by standard deviation) of the top ten high-risk
countries. The death tolls are higher for India, Bangladesh,
China, Haiti, and Indonesia, and lower in Pakistan, Somalia,
Algeria, Viet Nam, and the United States. For most

countries, the death tolls of the 2050s are higher than that of
the 2030s; and the death tolls of the RCP8.5-SSP3 scenario
are higher than that of the RCP4.5-SSP2 scenario. The
changes of death tolls are higher in India and Bangladesh,
increasing 1.22–3.63 times for India and 2.82–5.16 times for
Bangladesh. The risk changes of Haiti are the lowest, about
0.03–0.27 times (Fig. 2).

Fig.2 Annual average death tolls of the top 10 high-risk countries (in descending order by death toll). The error bar represents the standard
deviations across the 11 Atmosphere–Ocean General Circulation Models (AOGCMs)
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Mapping Global Risk of GDP Loss to River
Floods

Junlin Zhang, Xinli Liao, and Wei Xu

1 Background

Globally, river flooding induced by heavy rainfall frequently
causes serious economic losses every year (Jongman et al.
2015; CRED and UNISDR 2018; CRED 2019). Particularly,
heavy rainfall will increase in the future with climate
warming (Liao et al. 2019). This could lead to greater
rain-induced local flooding in some watersheds or regions
(IPCC 2012). Besides, exposed assets to floods are
increasing with the socioeconomic development (Jongman
et al. 2015; Winsemius et al. 2018; Liao et al. 2019).

Generally, river flooding risk assessment has two steps.
The first is to simulate river flooding hazard using hydro-
logical or hydrodynamic model and inundation model, and
the second is to calculate economic losses by overlaying the
economic data and flood hazard maps, and the results are
used to assess the economic loss risks from floods (Arnell
and Gosling 2016; Lim et al. 2018). Projected future pre-
cipitation and social-economic datasets provide a basis for
these studies. Vulnerability functions of economic loss have
been developed for the risk assessment (Alfieri et al. 2015;
Muis et al. 2015; Dottori et al. 2016; Sarhadi et al. 2016;
Wing et al. 2018). But most studies are concerned with asset
losses and there are few studies on GDP loss risks. In
addition, many studies focus on the risk at the country and

region levels, lacking grid-level high spatial resolution
results.

In order to address the issues, this study assessed the GDP
loss risks from floods by two main steps. The first was to
develop vulnerability functions of GDP losses for the
countries by revising an existing vulnerability function.
Then future potential GDP losses of the 2030s and the 2050s
were estimated at the 2.5' grid level under the Representative
Concentration Pathway (RCP) and Shared Socioeconomic
Pathway (SSP) scenarios of RCP4.5-SSP2 and
RCP8.5-SSP3. The results were compiled to produce the risk
maps at the 0.25° grid level and country level.

2 Method

Figure 1 shows the technical flowchart for mapping the risk
of GDP loss to floods of the world. This study revised the
existing vulnerability functions by adjustment coefficient
that is calculated based on recorded GDP losses. Then future
losses were estimated using predicted inundation data and
GDP data, and the adjusted vulnerability functions. Future
losses at the grid level were then aggregated to other geo-
graphic units. Finally, the risk size and model uncertainty are
analyzed.

2.1 Estimation of Risks

2.1.1 Estimation of Losses for the Baseline Period

The vulnerability function of asset losses is represented by
Eq. (1) (Wing et al. 2018). Using the function, historical
asset losses were estimated by Eqs. (2) and (3).
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VðdÞ ¼ �0:0067d4 þ 0:0723d3 � 0:233d2 þ 0:3953d; d\5

0:0038dþ 0:962; d>5

(

ð1Þ

Lhis i j ¼ Vðdhis i jÞ � Shis j � fhis i j ð2Þ

Lhis ¼ 1
11� 20

X20
j¼1

X11
i¼1

Lhis i j ð3Þ

where i is the order of the 11 Atmosphere–Ocean General
Circulation Models (AOGCMs); j is the sequence of the
20 years; his is the baseline period (1986–2005); Lhis_i_j,

dhis_i_j, and fhis_i_j are the estimated losses, water depth, and
inundation fraction for the ith AOGCM in the jth year for the
baseline period, respectively; Shis_j is the GDP data in the jth
year of the baseline period; Lhis is the annual average loss,
that is multi-model ensemble for the baseline period; V(d) is
the vulnerability function.

2.1.2 Calculation of Adjustment Coefficients

The study revised the vulnerability function of asset loss
(Eq. 1) for countries to build the vulnerability function of
GDP loss. Using Eq. (4), the adjustment coefficients (Kc

values) were calculated for the countries with total recorded

GDP scenario data(SSP2,
SSP3, 2016-2035, 2046-2065)

GDP losses at grid level
(11 AOGCMs, RCP4.5-SSP2 and RCP8.5-SSP3,  2046-2065)

Flood inundation depth data
(11 AOGCMs,  RCP4.5 and 
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Fig. 1 Technical flowchart for mapping global risk of GDP loss to river floods. AOGCM = Atmosphere–Ocean General Circulation Model;
RCP = Representative Concentration Pathway; SSP = Shared Socioeconomic Pathway
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losses and estimated losses both greater than zero during the
baseline period. On this basis, the adjustment coefficient is the
minimum of above calculated Kc values for the countries with
total recorded losses equal to zero during the baseline period;
and the adjustment coefficient is the average of above calcu-
lated Kc values for the countries with total recorded losses
greater than zero but total estimated losses equal to zero.

Kc ¼
P20

j¼1 SLhis c j

Lhis c
ð4Þ

where Kc is the adjustment coefficient of country c; j repre-
sents the sequential number of the 20 years in the baseline
period; SLhis_c_j is the recorded direct economic losses of
country c.

The adjusted vulnerability function is shown in Eq. (5).

AdjVc dð Þ ¼ Kc � V dð Þ ð5Þ

where AdjVc(d) is the adjusted vulnerability function of
country c.

2.1.3 Calculation of Future Losses and Change

Future losses of a grid in country cwere estimated according to
Eq. (6), based on future predicted inundation andGDPdata and
the adjustedvulnerability function.Next, the study averaged the
results of 20 years for all AOGCMs (Eq. 7) to compute
uncertainties; then we averaged the results of the 11 AOGCMs
as the losses of the 2030s or the 2050s to reduce model uncer-
tainties (Eq. 8). Finally, the changes of losses from the baseline
period to the future period were calculated by Eq. (9).

Lfut i j ¼ AdjVcðdfut i jÞ � Sfut j � ffut i j ð6Þ

where Lfut_i_j, dfut_i_j, and ffut_i_j are the estimated GDP
losses, water depth, and inundation fraction for the ith
AOGCM in the jth year for a future period, respectively;
Sfut_j is the GDP data in the jth year of a future period.

Lfut i ¼ 1
20

X20
j¼1

Lfut i j ð7Þ

where Lfut_i is the average losses of 20 years (2016–2035 or
2046–2065) for the ith AOGCM.

Lfut ¼ 1
11

X11
i¼1

Lfut i ð8Þ

where Lfut is the losses of the 2030s or the 2050s for the
multi-model ensemble, which averaged the results from the
11 AOGCMs.

DL ¼ Lfut � Lhis ð9Þ
where ΔL is the change of losses for the 2030s or the 2050s
relative to the baseline period.

2.2 Model Uncertainty

The result uncertainty of multi-models is measured by
standard deviation (Eq. 10) and coefficient of variation CV,
the ratio of SD to L in Eq. 10.

SD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP11

i¼1 Li � Lð Þ2
11

s
ð10Þ

where Li is the average losses of 20 years for the ith
AOGCM (Lhis_i or Lfut_i). L is the average losses of 20 years
for the multi-model ensemble (Lhis or Lfut).

3 Results

Globally, the annual average GDP losses of the 2030s are
approximately USD 223 billion for the RCP4.5-SSP2 sce-
nario and USD 199 billion for the RCP8.5-SSP3 scenario;
they increase 4.82 and 4.19 times relative to the baseline
period, respectively. The annual average GDP losses of the
2050s are approximately USD 447 billion for the
RCP4.5-SSP2 scenario and USD 429 billion for the
RCP8.5-SSP3 scenario; they increase 10.69 and 10.21 times
relative to the baseline period. The patterns of spatial dis-
tribution are similar for different scenarios. High-risk areas
are mainly located in East Asia, South Asia, and Southeast
Asia. The risks of GDP loss are the highest in the eastern
coastal areas of China, the vicinity of the Ganges River
Basin, and the coastal areas of the Indo-China Peninsula.
Overall, the risk of the 2050s is higher than that of the
2030s. For Africa, the risks are higher in the western,
southern, and eastern Africa. For South America, the risks
are higher in Liano Orinoco Plain and La Plata Plain. The
high-risk areas in Europe are spread out. The high-risk areas
in North America are distributed in Atlantic Coastal Plain,
along Saint Lawrence River, and in the southern coastal area.
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The high-risk areas in Australia are mainly in the southeast
coastal area.

By zonal statistics of the GDP loss results, we calculated
the annual average GDP losses at the national level. Figure 2
shows the annual average GDP losses and errors (measured
by standard deviation) of the top ten high-risk countries.
The GDP loss risks are the highest for China, higher than

USD 100 billion for the 2030s and the 2050s, increasing
more than eight times relative to the baseline period. The
average annual GDP losses of the remaining countries are all
lower than USD 100 billion. The changes are greater
for India and Bangladesh relative to the baseline period. In
most countries, the risks are higher in the 2050s than in the
2030s.

Fig. 2 Annual average GDP losses of the top 10 high-risk countries (in descending order by GDP loss). The error bar represents the standard
deviations across 11 Atmosphere–Ocean General Circulation Models (AOGCMs)
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Mapping Global Risk of Crop Yield Under
Climate Change

Weihang Liu, Shuo Chen, Qingyang Mu, Tao Ye, and Peijun Shi

1 Introduction

Risk of crop yield under climate change refers to the
potential changes in crop yield (mean yield, interannual
yield variability, and lower extreme yield) caused by climate
change. Increases in the interannual variability of yield and
the likelihood of lower yield extremes can affect the liveli-
hoods of farmers (Morton 2007), increase pressure on
inter-temporal food reserves (Bobenrieth et al. 2013), induce
large price changes in the global market or even destabilize
regions of the world (Sternberg 2011). The risk of crop yield
is one of the primary drivers of food system instability (IPCC
2017), and its response to climate change is critical to
understanding the impact of climate change on food security
(FAO 2019). Previous studies have mostly focused on the
variation in the mean yield in response to climate change
(Ray et al. 2015). Climate change impacts on crop yield risk,
however, remains a key research gap (IPCC 2017).

Recent studies have provided evidence for changes in the
yield risk of major cereal crops and identified significant
global impacts of climate change, either at the country level
or the 0.5° grid level (Osborne and Wheeler 2013; Iizumi

and Ramankutty 2016). These studies have been followed up
by regional county-level analysis of the interannual yield
variability of maize. Most recently, efforts have been con-
cerned with predicting the impact of future climate change
on the interannual yield variability, focusing on wheat and
maize at both the global and regional scales, using site-based
process-based crop models (Liu et al. 2019) and statistical
models (Urban et al. 2012; Ben-Ari et al. 2018; Tigchelaar
et al. 2018).

This study evaluated the changes in the global staple
crop yield risk from three aspects—mean yield, interannual
yield variability, and lower extreme yield—under the
RCP2.6-2030s, RCP2.6-2050s, RCP4.5-2030s, RCP4.5-
2050s, RCP8.5-2030s, and RCP8.5-2050s scenarios. The
crop yield risk was evaluated by using multi-model ensemble
(MME) simulation with global high spatial resolution (0.25°)
climate forcing data. Emulators of global gridded crop models
(GGCM)were developed to ensure efficient prediction (Lobell
andBurke2010;Holzkämperetal.2012;Oyebamijietal.2015;
Raimondo et al. 2020). The present resultsmay provide crucial
information for climate risk assessment and effective
adaptations.
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2 Method

The method for detecting changes in the wheat yield
variability for future climate scenarios includes the fol-
lowing steps (Fig. 1): (1) Develop emulators for the
process-based models in the GGCMs; (2) Conduct MME

prediction of the global wheat yield at fine spatial resolu-
tion; (3) Correct the bias in the predicted global yield using
country-level reported yield to best capture the actual
interannual yield variability; (4) Summarize yield risk
change. Figure 1 shows the technical flowchart for map-
ping the risk of crop yield of the world under climate
change.

Fig. 1 Technical flowchart for
mapping crop yield risk of the
world under climate change,
taking wheat as an example.
GGCM = Global Gridded Crop
Model; MME = Multi-model
ensemble; GCM = General
Circulation Model
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2.1 Development of the Global Gridded Crop
Model (GGCM) Emulators

Emulator training via extreme gradient boosting

The development of the emulators consists of training
machine learning models on specific GGCM input and
output datasets so that the models may replicate the complex
process of yield simulation within the crop model. Variables
that have been frequently reported to significantly influence
wheat yield were prepared as the predicting variables (Fol-
berth et al. 2019), and they cover climate, soil type, length of
vegetation growth period, and management practices. All the
data for training were computed/adapted from the GGCMs’
input and output datasets. For climate data, the monthly
variables and the growing season variables were considered.
Soil properties, the length of vegetation growth period, and
management practices were site-specific variables.

In total, six emulators were trained for the three GGCMs
(pDSSAT, pAPSIM, and EPIC-IIASA) each with two cul-
tivation possibilities (rainfed and irrigation). An extreme
gradient boosting (XGB) algorithm was used due to its better
performance in terms of goodness-of-fit, cross-validation
errors, and computation efficiency than the random forest
algorithm (Folberth et al. 2019). The predicting variables
and the simulated yield in the GGCMs were randomly split
into training and validation sets that contained 75% and 25%
of the samples (Yue et al. 2019), respectively.

Predicting global crop yield by MME simulation

The MME yield prediction was performed at the global level
for the 0.25° grids for the years 1986–2005 (baseline per-
iod), 2016–2035 (the 2030s), and 2046–2065 (the 2050s)
under the RCP2.6, RCP4.5, and RCP8.5 scenarios.
The MME approach has been proven to be a reliable method
in reproducing the main effects anticipated for climate
change when simulations are compared with observation
(Asseng et al. 2015; Frieler et al. 2017). The large climate
model-crop model emulator setup in our framework enabled
a robust MME estimate as well as analysis of spatial
heterogeneity and inter-model uncertainty (Martre et al.
2015). There were 432 treatments (13 or 21 general circu-
lation models (GCMs) � 3 emulators for the baseline per-
iod, RCP2.6-2030s, RCP2.6-2050s, RCP4.5-2030s,
RCP4.5-2050s, RCP8.5-2030s, and RCP8.5-2050s) each
simulated for 20-year periods. For future yield predictions,
planting dates, soil properties, and management practices
were assumed to remain constant through time. The MME
median across the 3 emulators and the 13 or 21 GCMs was
taken as the final estimate.

Bias correction of the predicted yield in the baseline
period and in future applications

The emulator-predicted global wheat yields were corrected
for bias using the national yield reports of the FAO. Rainfed
and irrigated yield were first aggregated to the grid and
national levels using an area-weighted average (Müller et al.
2017).

2.2 Measuring the Yield Risk

To fully describe the yield risk, the conventional approach
was to derive the probability distribution or the cumulative
distribution of the yield (Coble et al. 2010; Ye et al. 2015).
In this study, we computed the mean yield (multi-year
average), yield interannual variability (multi-year standard
deviation), and the lower yield extremes (multi-year 10th
percentile) across different 20-year periods. To account for
the uncertainty associated with the projected input climate
data, the computation was conducted for simulated yield
series derived independently with each GCM and emulator,
and the results of the MME median were reported.

3 Results

3.1 Wheat Yield Risk

Globally, countries with higher mean wheat yield are mainly
located in Europe, while those with lower yield are mainly
located in East Africa, the Middle East, and the northern
United States. The change of yield risk shows a complex
connection with warming. For higher emissions and warm-
ing scenarios, although countries at higher latitudes would
be more likely to experience higher interannual variability of
yield, their mean yield and lower extreme yield tend to
increase, compared with the baseline period. Countries at
low latitudes, e.g., India, would suffer more, that is, its lower
extreme yield will be much worse in the future while its
yield interannual variability slightly declines.

From the perspective of mean wheat yield, among the top
10 wheat-producing countries in the world (Fig. 2), the
mean yields of France and Germany stand out, exceeding 6
t/ha. The mean yields of the other wheat-producing countries
are lower than 3 t/ha. There are two patterns of variation of
the mean yields under warming conditions. On the one hand,
the rising temperature will bring a favorable effect on mean
wheat yield. For example, the mean yields in China, the
United States, Russia, France, Canada, Germany, and Tur-
key will gradually climb up with increasing warming. On the
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other hand, warming will impose an adverse influence on the
other wheat-producing countries such as India, Australia,
and Pakistan, whose mean yields will fall during the future
periods.

From the perspective of wheat yield interannual vari-
ability, among the top ten wheat-producing countries in the
world (Fig. 3), Russia, France, and Germany have higher
wheat yield interannual variability. China, India, and the
United States—the top three countries in wheat production
—are at the middle level, while Pakistan has the lowest
interannual variability. With increasing warming (e.g.,
higher emissions scenario or further into the future), the
interannual variability will rise in all countries, but the

degree will vary. In China, the interannual variability of
yield will grow insignificantly under the medium emissions
scenario (RCP4.5) but will increase slightly (less than 0.4
t/ha) under the high emissions scenario (RCP8.5). The
interannual variability in France is flat under the three sce-
narios of RCP4.5-2030s, RCP4.5-2050s, and RCP8.5-2030s.
However, when the temperature rises to a considerable
degree (RCP8.5-2050s), the interannual variability will
increase sharply.

From the perspective of lower extreme wheat yield,
among the top ten wheat-producing countries in the world
(Fig. 4), the countries with the highest lower extreme wheat
yield are France and Germany, where the yields are as high

Fig. 2 Mean wheat yield of the top 10 major wheat-producing countries (in descending order by total production). The error bar represents the one
standard deviation across the 21 general circulation models (GCMs) and three emulators

Fig. 3 Wheat yield interannual variability of the top 10 major wheat-producing countries (in descending order by total production). The error bar
represents the one standard deviation across the 21 general circulation models (GCMs) and three emulators
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as 4–6 t/ha, while the countries with the lowest wheat yield
are Australia, Canada, and Pakistan, where the yields can be
as low as 1 t/ha. The relationship between changes in lower
extreme wheat yields and warming is not uniform across
countries: with the increase of warming, most countries
show an overall upward trend, but India and Australia show
a downward trend. For example, a warmer world will cause
lower extreme wheat yield in India to become even lower.
However, it will have a favorable impact in high latitude
areas, especially in the United States, where the lower
extreme wheat yield will increase steadily under the four
scenarios of RCP4.5-2030s, RCP4.5-2050s, RCP8.5-2030s,
and RCP8.5-2050s.

3.2 Maize Yield Risk

Globally, countries with higher mean maize yield are mainly
located in Europe, northern China, and the United States
while those with lower yield are mainly located in central
Africa and southern India. Climate change will have a
two-sided effect on maize production in most of the regions.
Warming will reduce the maize yield interannual variability
risk (lower variability) but increase the lower extreme wheat
yield risk (lower yield) in the regions between south of the
Sahara and north of the equator in Africa and northern India.
Similarly, it will increase the variability risk (higher vari-
ability) but reduce the extreme yield risk (higher yield) in

Fig. 4 Lower extreme wheat yield of the top 10 major wheat-producing countries (in descending order by total production). The error bar
represents the one standard deviation across the 21 general circulation models (GCMs) and three emulators

Fig. 5 Mean maize yield of the top 10 major maize-producing countries (in descending order by total production). The error bar represents the one
standard deviation across the 21 general circulation models (GCMs) and three emulators
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Europe and southeast Africa. On the contrary, the North
China Plain and the central United States will be surely
harmed from warming, while the Great Lakes region of the
United States and central South America will benefit from it.

From the perspective of mean maize yield, among the top
ten maize-producing countries in the world (Fig. 5), the
United States, Chile, and Canada have the highest mean
maize yields, with values higher than 7 t/ha. The mean maize
yields of China and Argentina are moderate (around 4.5
t/ha), while that of Brazil, Mexico, Ukraine, and India are
lower, ranging from 1.5 t/ha to 3.5 t/ha. Few
maize-producing countries will benefit from warming
excluding Ukraine and Canada, whose mean maize yield

will increase during the future periods. The mean maize
yield of the United States, China, Brazil, Chile, and Russia
in the future periods tend to maintain a relatively consistent
level compared to that in the baseline period. In comparison,
the mean maize yields of Argentina, Mexico, and India will
decline slightly in the future.

From the perspective of maize yield interannual vari-
ability, among the top ten maize-producing countries in the
world (Fig. 6), in Chile and Canada, the interannual vari-
ability is higher than 0.6 t/ha. Conversely, in Mexico, India,
and Russia, it is low and about 0.2 t/ha. With the increase of
warming, the interannual variability of the United States,
China, Brazil, and Mexico will show a steady increasing

Fig. 6 Maize yield interannual variability of the top 10 major maize-producing countries (in descending order by total production). The error bar
represents the one standard deviation across the 21 general circulation models (GCMs) and three emulators

Fig. 7 Lower extreme maize yield of the top 10 major maize-producing countries (in descending order by total production). The error bar
represents the one standard deviation across the 21 general circulation models (GCMs) and three emulators
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trend—for example, under the RCP4.5 and RCP8.5 scenar-
ios, the interannual variability will become higher over time
in Canada and Russia. However, the interannual variability
under the RCP4.5-2050s scenario will be slightly higher
than that under the RCP8.5-2030s scenario. In contrast, the
interannual variability in Argentina, Chile, and India will
show a descending trend in general.

From the perspective of lower extreme maize yield,
among the top ten maize-producing countries in the world
(Fig. 7), lower extreme yields are higher in the United
States, Chile, and Canada, with values greater than 5 t/ha
during all the periods and under all the scenarios. There are
large differences in the relationship between the changes of
warming and lower extreme maize yield among the top ten
maize-producing countries. The lower extreme maize yield
in Canada tends to grow as temperature rise, but in most of
the countries (such as the United States, China, Brazil, Chile,
Ukraine, and Russia), it will fall after rising. The rising lower
extreme maize yield in short term may be a result of the
increasing precipitation. However, the lower extreme maize
yields in Argentina, Mexico, and India will be generally on
the decline.

3.3 Rice Yield Risk

Globally, countries with higher mean rice yield are mainly
located in the Mediterranean region, China, the southeastern
United States, and Peru while those with lower yield are
mainly located in Africa. There is uncertainty about the risks
in some areas, such as central Africa and coastal Asia,
because they will have increasing yield interannual vari-
ability but higher lower extreme rice yield. However, in

general, climate change will reduce the rice yield risk at
mid-latitude regions, especially Ukraine, northeastern China,
and southeastern South America, where yield interannual
variability will reduce along with the increasing lower
extreme rice yield. Conversely, most of the regions in the
low-latitude area, namely those in eastern Africa, southern
Asia, and northern South America, would experience higher
risk in terms of yield interannual variability and lower
extreme yield.

From the perspective of mean rice yield, among the top ten
rice-producing countries in the world (Fig. 8), China, the
United States, and Spain have the highest mean rice yields
(more than 6 t/ha) and Peru and Iran have lower but still
considerable mean yields (around 5.5 t/ha). Indonesia and
Ukraine have the mean rice yields of 4 t/ha, while Brazil,
India, and Nigeria have the lowest ones (less than 2.5 t/ha).
Warming has little effect on mean rice yields, especially for
Brazil, India, Peru, Spain, Nigeria, and Iran, where yields will
remain largely unchanged under the RCP4.5-2030s,
RCP4.5-2050s, and RCP8.5-2030s scenarios, although they
will decrease under the RCP8.5-2050s scenario compared
with that in the baseline period. However, the mean rice
yields of China and Ukraine will increase slightly while those
of Indonesia and the United States will decrease marginally.

From the perspective of rice yield interannual variability,
among the top ten rice-producing countries in the world
(Fig. 9), Ukraine has the greatest interannual variability
(>0.8 t/ha), followed by Indonesia (>0.6 t/ha). However, as
the top three rice-producing countries, China, Brazil, and
India have relatively little interannual variability. In several
major rice-producing countries, the increase of interannual
variability of rice yield has a weak positive relationship with
the increase of warming. In China, Brazil, India, Indonesia,

Fig. 8 Mean rice yield of the top 10 major rice-producing countries (in descending order by total production). The error bar represents the one
standard deviation across the 21 general circulation models (GCMs) and three emulators
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Peru, the United States, and Nigeria, the interannual vari-
ability of rice yield will increase as the climate gets warmer,
but the trend is not significant. On the other hand, the
interannual variability of rice yield in Ukraine will show a
fluctuating upward trend, that is, under the high emissions
scenario (RCP8.5), interannual variability will be higher
than that in the medium emissions scenario (RCP4.5), but
the interannual variability in the near future (the 2030s) is
higher than that in the far future (the 2050s). In Spain and
Iran, the yield interannual variability will decrease first, but
increase slightly when it is much warmer.

From the perspective of lower extreme rice yield, among
the top ten rice-producing countries in the world (Fig. 10),
the lower extreme rice yield is high in China, the United
States, and Spain (>5 t/ha), followed by Brazil and India (2–
3 t/ha) and Nigeria (1–2 t/ha). Among the top ten
rice-producing countries, the lower -extreme rice yields in
China, Brazil, Peru, and Spain will increase first and then
decrease under higher emissions scenario and further into the
future, but in Ukraine the lower extreme rice yield will keep
increasing. The lower extreme rice yields in India, Indonesia,
the United States, Nigeria, and Iran will generally decrease.

Fig. 9 Rice yield interannual variability of the top 10 major rice-producing countries (in descending order by total production). The error bar
represents the one standard deviation across the 21 general circulation models (GCMs) and three emulators

Fig. 10 Lower extreme rice yield of the top 10 major rice-producing countries (in descending order by total production). The error bar represents
the one standard deviation across the 21 general circulation models (GCMs) and three emulators
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Appendix A
Projection of Future Climate Change

Lianlian Xu and Aihui Wang

Introduction

The Coupled Model Intercomparison Project Phase 5
(CMIP5) multi-model ensembles under different emissions
scenarios (Taylor et al. 2012; Dai 2013) are widely used to
understand the past and predicit the future climate changes.
However, the horizontal resolution of the general circulation
models (GCMs) in the CMIP5 project are relatively coarse,
which has limited the ability of the models to capture the
spatially detailed information of (extreme) climate events at
the regional or local scales (Ines and Hansen 2006; Xue et al.
2014). To overcome this limitation, statistical downscaling
methods are widely used (Maurer and Hidalgo 2008; Li et al.
2010; Xue et al. 2014; Cannon et al. 2015; Chen et al. 2017).

Models and Method

The bias correction and spatial downscaling (BCSD) algo-
rithm (Xu and Wang 2019) is used to correct and downscale
the daily maximum temperature, daily minimum tempera-
ture, and daily precipitation from 13 GCMs in the CMIP5
project under the RCP2.6 scenario. Historical simulations
(1961–005) and future projections (2006–065) under the
RCP2.6 scenario in the CMIP5 project (Taylor et al. 2012)
are adopted to be statistical downscaled in this study.
Table A.1 provides the basic information about these GCMs.

In order to use the BCSD method, the Global Meteoro-
logical Forcing Dataset (GMFD, 0.25° � 0.25°) is taken
as the observations. The GMFD is derived from merged
reanalysis products of remote sensing and in situ observa-
tions (Sheffield et al. 2006), which was originally developed
as the atmospheric forcing dataset for offline land sur-
face models. After the three steps of BCSD, we obtain the
global daily maximum temperature, daily minimum
temperature, and daily precipitation at a spatial resolution of
0.25° � 0.25° from 13 GCMs under the RCP2.6 scenario.
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Table A.1 List of the 13 general
circulation models (GCMs) from
the CMIP5 archive

Model Name Horizontal
Resolution in
Degrees

Modeling Center

BNU-ESM 2.8°� 2.8° Beijing Normal University

CanESM2 2.8°� 2.8° Canadian Centre for Climate Modeling and Analysis

CNRM-CM5 1.4° � 1.4° Centre National de Recherches Meteorologiques /
Centre Europeen de Recherche et Formation Avancee en
Calcul Scientifique

CSIRO-Mk3.6.0 1.875° � 1.875° Commonwealth Scientific and Industrial Research
Organization in collaboration with Queensland Climate
Change Centre of Excellence

GFDL-CM3 2° � 2.5° NOAA Geophysical Fluid Dynamics Laboratory

GFDL-ESM2G 2° � 2.5°

GFDL-ESM2 M 2° � 2.5°

IPSL-CM5A-MR 1.27° � 2.5° Institute Pierre Simon Laplace

MIROC5 1.4° � 1.4° Japan Agency for Marine-Earth Science and Technology,
Atmosphere and Ocean Research Institute (The University of
Tokyo), and National Institute for Environmental Studies

MIROC-ESM 2.8° � 2.8°

MPI-ESM-LR 1.875 � 1.875° Max-Planck-Institut für Meteorologie

MPI-ESM-MR 1.875° � 1.875°

MRI-CGCM3 1.121° � 1.125° Meteorological Research Institute
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Appendix B
Projection of Future Population and Economic
System Changes

Fubao Sun, Jing’ai Wang, Yujie Liu, Wenxiang Wu, Huiyi Zhu,
and Yaojie Yue

Introduction

The shared socioeconomic pathways (SSPs), which quali-
tatively and quantitatively describe broad patterns of possi-
ble global socioeconomic development with assumptions
about climate change and policy responses under different
challenges to mitigation and adaptation (O’Neill et al. 2014),
are one of the core contents in the Intergovernmental Panel
on Climate Change (IPCC) scientific assessment reports
(IPCC 2014) and in the current literature (O’Neill et al.
2016). The increasing demand of the Scenario Model
Intercomparison Project (ScenarioMIP) is calling for spa-
tially explicit population, GDP, crop distribution, industrial
value added, and road networks projections of high resolu-
tion for the future SSPs in both socioeconomic development
and climate change adaption and mitigation research.

To date the global population, GDP, industrial values
add, road networks projections for the five SSPs are mainly
provided at the national and super-national scales from
several global institutions, which have depicted a wide range
of uncertainty within different organizations (Riahi et al.
2017; Xue et al. 2018) and limited the usage of integration
with data from other disciplines. And the projections of
gridded datasets at the global scale, to the best of our
knowledge, are very limited so far.

This atlas has presented a set of spatially explicit global
socioeconomic factors: population, GDP, crop distribution,
industrial value added, and road networks projections that
reflect substantial long-term changes of socioeconomic
activities for both the historical period and future projections
under different SSPs.

Data Availability

Some detailed information regarding this atlas is shown in
the table below.F. Sun (&)

Key Laboratory of Water Cycle and Related Land Surface
Processes, Institute of Geographic Sciences and Natural Resources
Research, Chinese Academy of Sciences, Beijing, 100101, China
e-mail: sunfb@igsnrr.ac.cn

F. Sun
State Key Laboratory of Desert and Oasis Ecology, Xinjiang
Institute of Ecology and Geography, Chinese Academy of
Sciences, Urumqi, 830011, China

J. Wang � Y. Yue
Key Laboratory of Environmental Change and Natural Disaster of
Ministry of Education, Faculty of Geographical Science, Beijing
Normal University, Beijing, 100875, China

Y. Liu � W. Wu � H. Zhu
Key Laboratory of Land Surface Pattern and Simulation, Institute
of Geographic Sciences and Natural Resources Research, Chinese
Academy of Sciences, Beijing, 100101, China

Data and Method Format Advantages

Global
population

Multi-source data
from the World
Bank, International
Monetary Fund,
United Nations,
IIASA, and so on

geotif Multi-source data
based

Global
GDP

Multi-source data as
population;Official
GDP at country and
subnational levels;
Chinese GDP
updated under
two-children policy.

geotif Accuracy verified;
High resolution;
Two-children policy
in China considered

(continued)
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The global GDP disaggregation results for 2005 as his-
torical period and for 2030–2100 as future projections for
SSP1–5 at 10-year interval are provided (purchasing power
parity in 2005 USD), acknowledging the two-children policy
in China, with spatial resolutions of 30 arc-seconds (ap-
proximately 1 km at the equator) and 0.25 degrees. The
global gridded GDP are provided in geotif format at https://
doi.org/10.5281/zenodo.4350027. The GDP values are dis-
aggregated within its administrative boundaries, and the
Antarctica, oceans, as well as some desert or wilderness
areas are filled with value 0.

The global industrial added value disaggregation results
for 2010 as historical period and for 2030 and 2050 as future
projections for SSP1–3 are provided (purchasing power
parity in 2010 USD), with spatial resolutions of 0.5 degrees.
The global and China 1 km gridded industrial added value is
provided in geotif format at http://www.geodoi.ac.cn/
WebCn/doi.aspx?Id=805 and https://www.scidb.cn/en/
detail?dataSetId=633694460995174400&dataSetType=
journal, respectively.

Further detailed information regarding the atlas is avail-
able from “Global dataset of gridded GDP scenarios”, which
is provided by the Global Change Risk of Population and
Economic Systems (GCR-PES): Mechanisms and Assess-
ments Project, Beijing Normal University, Beijing, China
(http://gcr.bnu.edu.cn/).
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Data and Method Format Advantages

NTL images and
global gridded
population of high
resolution are used as
base map in GDP
disaggregation

Global
crop
distribution

Global rice, wheat,
and maize
distribution;
� 0°C cumulative
temperature, annual
precipitation, annual
average temperature,
average temperature
of the coldest month,
pH, drainage,
conductivity,
exchangeable sodium
percentage, soil
property and soil
depth;
The Maxent model

geotif Accuracy verified;
High resolution

Global
crop
distribution

Value added in
mining,
manufacturing (also
reported as a separate
subgroup),
construction,
electricity, water, and
gas;
NTL images;
Random forest
method

geotif Accuracy verified;
High spatial
resolution;
The first global
industrial value
added dataset of the
past and the future

Global
road
networks

Population,
GDP per capita;
Land use

geotif High resolution

https://doi.org/10.5281/zenodo.4350027
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Appendix C
Risk Assessment: Framework and Models

Tao Ye, Wei Xu, and Peijun Shi

Introduction

Global climate change featured by warming has created
serious challenges to sustainable development and human
security (IPCC 2014). It has become an important consensus
of the international society to assess global change risk at the
global scale and carry out tailored governance and risk-based
adaptation (Aalst et al. 2014). Research initiatives from
international organizations (World Economic Forum 2017),
academic institutions, and state governments (DEFRA 2012)
have covered global change risk assessment in some key
fields, including people’s health (Stephenson et al. 2013),
population exposure and mortality (Hirabayashi et al. 2013),
economic loss and assets exposures (Burke et al. 2015; Dietz
et al. 2016), and food security (Rosenzweig et al. 2014). The
assessment of global change risk is generally regarded as the
evaluation of a co-evolutionary system consisting of
changing climate and socioeconomic subsystems and their
interactions (Winsemius et al. 2016). Correspondingly, such
assessment predicts potential future losses using predefined
quantitative models to integrate the combined dynamics of
future climate change and socioeconomic development
(Bouwer 2013; Liu et al. 2018; Wing et al. 2018). In the past
decades, great efforts have been devoted to build climate
projection (Eyring et al. 2016) and shared socioeconomic

pathways (O’Neill et al. 2014) to produce datasets for
common uses. Models used to describe the interactions,
either statistical or process-based, are mostly
problem-specific, and require substantially more efforts to
catch up.

Conceptual Framework

The general conceptual framework to assess global change
risk is to develop model systems that can integrate the
combined dynamics of future climate change and socioeco-
nomic development. Overall, it succeeded the hazard, vul-
nerability, and exposure framework of classic risk
assessment models, but needs to accommodate the dynamics
of climate, population, and economic systems (Fig. C.1).

Two types of major driving forces are considered in the
models: climate change and socioeconomic system change.
For climate change, three factors were considered:
near-surface air temperature, precipitation, and wind speed.
As suggested by the Intergovernmental Panel on Climate
Change (IPCC 2012), climate change contains the changes
in its mean, variability, and skewness. When focusing on the
risk, the changes in variability and skewness alters climate
extremes. In light of this, the changes in the mean, interan-
nual variability, and extremes of each climate factor were
considered as the driving forces from the hazard side of risk.

The changes of population and economic systems indi-
cate the changes in both exposure and vulnerability.
Exposed units considered in this atlas included population,
staple grain production of paddy rice, wheat, and maize, and
gross domestic product (GDP).

Risk assessment models were employed to describe the
interactions between climate change hazards and the popu-
lation and economic systems. The interaction-focused
approach determines the models used correspondingly. For
population affected and mortality and GDP losses, only
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climate extremes were considered, including extremely high
temperature and rainstorms (and subsequent flood events).
For these parts, classical natural disaster risk assessment
models were employed by using a loss function (also know
as quantitative vulnerability function) fitted from historical
losses to link hazard and loss. For staple grain production,
the impacts of changes in climate mean, variability, and
extremes were all considered. Correspondingly, crop emu-
lators derived from global gridded crop models were used to
emulate crop yields under different climate change scenarios,
from which the changes in mean yield, yield interannual
variability, and lower extremes of yield were obtained
(Table C.1).

Technical Specifications

Forcing and Scenarios

For climate change, Representative Concentration Pathways
(RCPs) employed in the IPCC Coupled Model Intercom-
parison Project 5 (CMIP5) were used. To fully accommodate
potential climate change, RCP2.6, RCP4.5, and RCP8.5
were actually used. Unless specifically indicated, climate
forcing of NEX-GDDP released by the National Aeronautics
and Space Administration (NASA) with 21 general

circulation models (GCMs) and 0.25 degrees was used for
RCP4.5 and RCP8.5. Thirteen GCMs in the CMIP5 project
were downscaled using the bias correction and spatial
downscaling (BCSD) method to supplement the
NEX-GDDP dataset under the RCP2.6 scenario. More
details about the downscaled data can be found in Appendix
1 (Projection of Future Climate Change).

For socioeconomic change, the Shared Socioeconomic
Pathways (SSPs) setting the fundamental population and
GDP growth paths in the future were considered. The SSP1,
SSP2, and SSP3 were used in accordance with the RCP2.6,
RCP4.5, and RCP8.5 scenarios. More details about the
projection of global distribution of population, crop, GDP,
industrial value added, and road networks are found in
Appendix 2 (Projection of Future Population and Economic
System Changes), and earlier chapters in Part II.

Risk Metrics

Annual average loss (AAL) was used as the key risk metric
indicator. Simulated losses were averaged over each 20-year
period, namely the baseline period (1986 − 2005), the 2030s
(2016 − 2035), and the 2050s (2046 − 2065), following the
CMIP5 framework. In the atlas, multi-model ensemble
means and spreads of AALs were reported. The difference in

Table C.1 Types of impact Climate Change Climate Mean
Changes

Climate Variability
Changes

Climate Extreme Changes

Population

Affected/exposed N/A N/A Extremely high temperature;
rainstorms/droughts

Mortality N/A N/A Extremely high temperature;
floods

Economic
system

Crop exposed N/A N/A Droughts/extremely high
temperature

Crop yield loss Mean yield
changes

Changes in interannual
variability of yield

Changes in lower extreme of
yield

GDP exposed N/A N/A Floods/droughts

GDP loss N/A N/A Floods

Risk assessment models
• Model for climate mean 

change risk
• Model for climate 

variability and extremes 
change risk

Projected climate change in mean, 
variability and extremes

(hazards)

Projected changes in population and 
socioeconomic systems

(exposure and vulnerability)

Global assessment
of

Population mortality,
Crop yield damage, 

and
GDP loss

(risks)

Fig. C.1 Conceptual framework
of the global change risk
assessment
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cross-period AALs is the final measure of global change
risk, the change in risk jointly driven by climate change and
population and economic system changes.
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Appendix D
Atlas Architecture and Design

Jing’ai Wang, Ying Wang, and Tian Liu

Design Concept

The maps of global change risk of population and economic
systems are designed to express the spatial distribution of
various elements. The main contents are the climate change,
changes of exposures, and risks, and the core contents are
the regional differences and changes of risks in different time
periods and under different emissions and socioeconomic
scenarios in the future. The maps visualize where the areas
with the greatest changes in the extremes of basic meteo-
rological elements will be, where or during what time period
the risk will change the most, and where the highest risk
zones will be found, which help the readers and users of the
atlas to understand the spatial patterns of change in the future
and make informed decisions. Every type of maps contains
information on indicator (including mean, variability, and
extremes), time period and scenario (including different time
periods and emissions and socioeconomic scenarios), and
attribute (different grades). The atlas is based on the
three-dimensional structure (Fig. D.1) to present the con-
tents, with the selected methods of presentation and color
scheme and layout.

Cartographic Units

Grid is the fundamental unit for the assessment of basic
climate factors, exposure, and risk of the population and
economic systems as well as their cartographic presentation,
which is of 0.25° � 0.25°.

Technical Flowchart

The mapping and compilation of this atlas include the fol-
lowing steps: preparation and design, map drafting, map
plotting, and map generalization (Fig. D.2).

Cartographic Presentation

A variety of conventional cartographic presentation methods
are used in this atlas to describe the change of basic climate
factors, exposure, and risk (Table D.1), such as the
quality-based method, line method, quantity-based method,
etc.

Map groups can organize the maps of complex disaster
processes in an intuitive way. Within a map group, each
series contains seven combinations of time period and sce-
nario—the baseline (2000s), 2030s-RCP2.6 (SSP1),
2030s-RCP4.5 (SSP2), 2030s-RCP8.5 (SSP3),
2050s-RCP2.6 (SSP1), 2050s-RCP4.5 (SSP2), and
2050s-RCP8.5 (SSP3). Examples of the map groups are
provided in Table D.2 (Tables D.3 and D.4).

Map Color Design

The final color system of the maps in the atlas is presented in
Table D.5.
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Time Period
Scenario 

2000s 2030s 2050s

RCP2.6 RCP4.5 RCP8.5

SSP1 SSP2 SSP3

Mean

Variability

Extremes

Fig. D.1 Design concept of the atlas
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Fig. D.2 Technical flowchart for the mapping and compilation of the atlas
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In this atlas, the color design is demanding. In the part of
climate change, the presentation of attributes adopts a
ten-grade classification system. The color design principles
are (1) emphasizing the areas with extreme values since
these areas have the top level of risk for warning, and using
light gray for areas with no data and dark gray for extremely
low values in some maps (i.e., annual mean temperature
variability); (2) highlighting the main colors (red, blue,

brown) of the three basic climate factors (temperature, pre-
cipitation, wind); and (3) highlighting coastal boundaries by
using thicker lines and darker color, for maps related to
temperature and wind speed. In the rainfall maps, the coastal
boundaries are depicted in black to distinguish them from
the dominant color (blue).

In the part of exposures, the presentation of attributes also
adopts a ten-grade classification system. The color design

Table D.1 Map presentation methods

Maps Presentation Method Thematic Map Examples

Environment Quality-based method World political maps, global soil, global land cover, global climate zones

Satellite image Global satellite image

Quantity-based method Global digital elevation models, global terrain slope

Line symbols Global river systems

Climate change Quantity-based method All the maps

Change of exposure All the maps

Change of risk All the maps

Table D.2 Climate change map group

Temperature Time period and scenario

Baseline 2030s,
RCP2.6

2030s,
RCP4.5

2030s,
RCP8.5

2050s,
RCP2.6

2050s,
RCP4.5

2050s,
RCP8.5

Change in mean

Change in
variability

Change in extremes

Table D.3 Change of exposure map group

Exposure Time period and scenario

Baseline 2030s, SSP1 2030s, SSP2 2030s, SSP3 2050s, SSP1 2050s, SSP2 2050s, SSP3

Population

GDP

Road system
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principles are (1) highlighting the main colors (orange,
purple, green, brown) of each element (population, GDP,
crops, and roads) in the distribution map of population and
economic system elements; (2) emphasizing the colors of
both the element itself and the hazard factor (rainstorm-blue,
drought-brown, high temperature-red/purple); and (3) repre-
senting the 0 or no data areas with white or light gray, except
for crop exposure to extremely high temperature (empha-
sized in black), and high values are emphasized in red or
purple for warning in the exposure maps.

In the part of risks, the presentation of attributes adopts a
5/6-grade classification system. The color design principles

are (1) using red/purple in all maps to emphasize the areas
with high risk; (2) using white to represent areas with no
data in the heatwave mortality risk, flood mortality risk, and
flood GDP loss risk maps, and the color of the ocean is
changed from dark blue to light blue to indicate different
periods; (3) in the crop risk maps the color of areas with no
data is changed from dark gray to light gray to indicate
different periods.

All maps in the atlas follow the principle of applying
bright and distinct colors to clearly show the spatial distri-
bution of the attributes.

Table D.4 Crop yield risk map group

Risk
(mean yield)

Time period and scenario

Baseline 2030s, RCP2.6 2030s, RCP4.5 2030s, RCP8.5 2050s, RCP2.6 2050s, RCP4.5 2050s, RCP8.5

Wheat

Maize

Rice

268 Appendix D: Atlas Architecture and Design



Cartographic Specifications

The national/regional boundary map of this atlas was same
as the one in the World Atlas of Natural Disaster Risk. The
designations employed and the presentation of material on
the maps do not imply the expression of any opinion con-
cerning the legal status of any country, territory, city, or area
or of its authorities, or concerning the delimitation of its
frontiers or boundaries. It uses the Equivalent Difference

Latitude Parallel Polyconic Projection with Central Meridian
of 150°E. We transformed the projection from the Equiva-
lent Difference Latitude Parallel Polyconic Projection into
the Robinson Projection and performed registration before
using the boundaries in the maps of this atlas.

All maps in the atlas adopt the Robinson Project with
Central Median of 160°E. According to the tasks and pur-
poses of the atlas, we used the following scales for the full
map of the world: 1:140,000,000 (Part I and baseline, single
page) and 1:200,000,000 (Parts II, III, and IV, 1/2 page).

Table D.5 Color system of the maps

Color system of three meteorological elements
Base color Base color Base color

Temperature: red
Mean Red-blue Variability Red-green-grey Extremes Red-blue

Red–green–blue
Orange-red-roseo

Precipitation: blue
Mean Blue-green

-orange
Variability Cyan-yellow–red Extremes Hyacinth-red

Wind: brown
Mean Rufous-green

-yellow
Variability Brown Extremes Purple-light brown-yellow

Color system of exposure and hazard
Base color

Population: orange Orange-crimson

GDP: purple Light green-orange-purple

Crops: green Rice: Orange-goose yellow-emerald green

Wheat: Orange-goose yellow-grass green

Maize: Orange-goose yellow-blue green

Industrial value added: fuchsia Gray-orange-fuchsia

Road networks: brown Lilac-brown-purple

Population exposure to heatwaves: orange Orange-deep purple

Population exposure to rainstorms: blue Blue-yellow–red

GDP exposure to drought: brown Purple-green–brown

Crops exposure to extremely high temperature: red Wheat: Grass green-yellow–red
Maize: Blue green-yellow–red

Rice: Emerald green-yellow-rose red

Color system of risk
Base color

Population risk of heatwaves: yellow Purple-yellow

Population risk of flood: green Red-green

GDP loss risk of flood: green Purple-green

Crop yield risk: green
Mean yield Red-green Interannual variability of yield Rufous-green Lower extreme yield Purple-green
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Appendix E
Integrated Assessment Model of Global Change Risk
of Population and Economic Systems

Ning Li, Zhengtao Zhang, Jidong Wu, Saini Yang, and Hongjian Zhou

To integrate the population risk (injured and casualties,
affected population) and the economic risk (production
reduction of major crops, damage to road networks, GDP
losses) due to global change, the integrated assessment
model of population and economic system risks of global
change is constructed and released.

This model integrates the theories and methods of global
change risk assessment, and can quantitatively assess the
risks of the population and economic systems caused by
changes in the mean, variability, and extremes of climate
elements (temperature, precipitation, wind). This model can
meet the requirements of population and economic system
risk assessment under different emissions scenarios
(RCP2.6, RCP4.5, and RCP8.5, and SSP1, SSP2, and SSP3)
at different spatial resolutions (50 km � 50 km for the
global scale, and high resolution of 30 km � 30 km for
hotspot areas), and in different time periods (the 2030s and
2050s). The global multi-regional assessment model and
multi-scale assessment model are systematically integrated,
and finally a global population and economic system risk
assessment model is formed.

The model is mathematically reliable and produces useful
results. It can effectively identify the quantitative relation-
ships between the characteristics of different types of hazards
and their intensity and the impact on the populations, the
function of the transportation networks, the capital stock,

and the industrial systems. It can also integrate different
emissions scenarios and future near-term (the 2030s) and
medium-term (the 2050s) risk changes, and help to under-
stand the mechanism of climate change that may lead to
risks.

Each module in this model describes the key steps in
model construction and is based on a set of reasonable
assumptions. Its results are replicable, and each model has
been exemplified by actual cases (Fig. E.1). The platform is
shown in Fig. E.2.

The three key modules and their component models are
described as follows:

(1) Risk assessment module of population impact
under future global change scenarios
• A model for evaluating the impact of future

average temperature on China’s population
mortality. This model assesses the risk of pop-
ulation mortality under the RCP4.5 and RCP8.5
scenarios at a regional scale.

• A model for evaluating the impact of future
drought on the exposure of the affected popu-
lation in the Beijing, Tianjin, and Hebei region.
The model evaluates the exposure of the popu-
lation to droughts under different future
scenarios.

• A model for evaluating the impact of future
heatwaves on the global exposure of the affected
population. The model considers the thermal
stress of extreme temperature and humidity, and
quantifies the risk of heatwaves affecting the
population at the global and regional scales
under different future scenarios.
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Fig. E.1 Composition of the integrated assessment model of global change risk of population and economic systems

Fig. E.2 Platform of the integrated assessment model of global change risk of population and economic systems
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• A model for evaluating the impact of future
extreme precipitation on the global affected
population. This model quantifies the death risk
of the population caused by rainstorms under
different future scenarios.

• A model for evaluating the changes of popula-
tion migration in China. The model assesses the
migration status of the population.

(2) Risk assessment module of impact on China’s
economic system under future global change sce-
narios (focusing on hotspot areas)
• A comprehensive disaster impact assessment

model of floods on the function of China’s
highway network system. The model evaluates
the differences in the impact of floods on the
function of highway network systems, changes
in regional traffic flow, and different adaptation
measures.

• An exposure assessment model of China’s
highways under the influence of extremely high
temperature and extreme precipitation events.
The model identifies the time and location at
which the highways may suffer destructive
damages, and assesses the degree of exposure to
high temperature and precipitation events of
highways in China in the future.

• A direct loss assessment model of typhoon
events. This model uses the changes in the
intensity and frequency of future typhoon haz-
ards predicted by climate models to estimate the
future spatiotemporal development trends of

GDP and asset stock exposure of China to
typhoons (based on SSPs data).

• An indirect economic impact assessment model
of major crop yield reduction. The model
assesses the economic ripple effects of agricul-
ture output reduction on other sectors due to
industrial linkages at the country scale.

• An indirect economic impact assessment model
considering annual mean temperature rises at
the global scale. The model assesses the indirect
economic ripple effects among countries

(3) Assessment module of direct losses and indirect
impacts of disaster events in China (hotspots)
• A direct loss assessment model of rainstorm and

flood events. This model uses the nonlinear
relationship between the direct economic losses
of historical disasters and the three climate ele-
ments of risk to evaluate the direct losses of
heavy rains and floods in China.

• An indirect economic impact assessment model
of the disaster-affected labor forces. This model
assesses the indirect economic impact of the
decline in labor supply and its recovery due to a
heavy rain in Wuhan City on Hubei Province
and China.

• A functional impact assessment model of
highway network system. This model evaluates
the differences in regional traffic flow due to the
floods in China, and changes and different
adaptation measures.
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Appendix F
Global Change Risk Map Platform
of Population and Economic Systems

Peijun Shi, Wei Xu, Tao Ye, and Bo Chen

To further explore the spatial distribution and changes of
various elements, the digital atlas platform—the Global
Change Risk Map Platform of Population and Economic
Systems—is designed.

The platform is the first to systematically present the global
change risks of population and economic systems at a global
scale. It is multi-period, multi-scenario, high-resolution, and
interactive. The platform systematically presents the global
changes in environmental elements, changes in climate ele-
ments (temperature, precipitation, wind), changes in

population and economic systems (GDP, crops, industrial
added value, transportation infrastructure), and global change
risks in population and economic systems. Themap data cover
three periods—the baseline period (1985 − 2005), the 2030s
(2016 − 2035), and the 2050s (2046 − 2065). For data in the
2030s and the 2050s, three Representative Concentration
Pathway (RCP) scenarios (RCP2.6, RCP4.5, and RCP8.5),
three Shared Socioeconomic Pathway (SSP) scenarios (SSP1,
SSP2, and SSP3) and their combination scenarios are inclu-
ded. The platform includes about 1150 maps in total
(Table F.1) and most maps have a spatial resolution of
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Table F.1 Maps on the digital atlas planform of global change risk of population and economic systems

Content Time
Period

RCP/SSP Value
and
Change

MME
and
MMS

Climate changes Temperature Mean Annual
Winter
Summer

Baseline – Value MME,
MMS

2030s
2050s

RCP2.6
RCP4.5
RCP8.5

Value,
Change

MME,
MMS

Variability Interannual
Winter
Summer

Baseline — Value MME,
MMS

2030s
2050s

RCP2.6
RCP4.5
RCP8.5

Value,
Change

MME,
MMS

Extremes TXx
TP10p
TX90p

Baseline – Value MME,
MMS

2030s
2050s

RCP2.6
RCP4.5
RCP8.5

Value,
Change

MME,
MMS

Precipitation Mean Annual
Winter
Summer

Baseline – Value MME,
MMS

2030s
2050s

RCP2.6
RCP4.5
RCP8.5

Value,
Change

MME,
MMS

Variability Interannual
Winter
Summer

Baseline – Value MME,
MMS

2030s
2050s

RCP2.6
RCP4.5
RCP8.5

Value,
Change

MME,
MMS

Extremes R10mm,
RX1day,
RX5day

Baseline – Value MME,
MMS

2030s
2050s

RCP2.6
RCP4.5
RCP8.5

Value,
Change

MME,
MMS

Wind speed Mean Annual
Winter
Summer

Baseline – Value MME,
MMS

2030s
2050s

RCP2.6
RCP4.5
RCP8.5

Value,
Change

MME,
MMS

Variability Interannual
Winter
Summer

Baseline – Value MME,
MMS

2030s
2050s

RCP2.6
RCP4.5
RCP8.5

Value,
Change

MME,
MMS

Extremes Surface
maximum
wind speed

Baseline – Value MME,
MMS

2030s
2050s

RCP2.6
RCP4.5
RCP8.5

Value,
Change

MME,
MMS

(continued)
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Table F.1 (continued)

Content Time
Period

RCP/SSP Value
and
Change

MME
and
MMS

Population and
economic system
changes

Global population Baseline
2030s
2050s

SSP1
SSP2
SSP3

Value –

Global Gross Domestic
Product (GDP)

Baseline
2030s
2050s

SSP1
SSP2
SSP3

Value –

Global crop distribution Wheat
Maize
Rice

Baseline
2030s
2050s

RCP2.6
RCP4.5
RCP8.5

Value –

Global industrial value
added

Baseline
2030s
2050s

SSP1
SSP2
SSP3

Value –

Global road system Baseline
2030s
2050s

SSP1
SSP2
SSP3

Value –

Global population
exposure to high
temperature

Baseline – Value MME,
MMS

2030s
2050s

RCP2.6-SSP1
RCP4.5-SSP2
RCP8.5-SSP3

Value,
Change

MME,
MMS

Global population
exposure to rainstorms

Baseline – Value MME,
MMS

2030s
2050s

RCP2.6-SSP1
RCP4.5-SSP2
RCP8.5-SSP3

Value,
Change

MME,
MMS

Global GDP exposure to
drought

Normal
Mild
Moderate
Severe
Extreme

Baseline – Value –

2030s
2050s

RCP2.6-SSP1
RCP4.5-SSP2
RCP8.5-SSP3

Value –

Global crop exposure to
extremely high
temperature

Wheat
Rice
Maize

Baseline – Value –

2030s
2050s

RCP2.6
RCP4.5
RCP8.5

Value –

Global change risks Global morality risk to
heatwave

Baseline – Value MME,
MMS

2030s,
2050s

RCP2.6-SSP1
RCP4.5-SSP2
RCP8.5-SSP3

Value,
Change

MME,
MMS

Global mortality risk to
floods

Baseline – Value MME,
MMS

2030s
2050s

RCP4.5-SSP2
RCP8.5-SSP3

Value,
Change

MME,
MMS

Crop yield risk Wheat
Rice
Maize

Yield mean
Yield
variability
Yield extreme

Baseline – Value MME,
MMS

2030s
2050s

RCP2.6
RCP4.5
RCP8.5

Value,
Change

MME,
MMS

Global GDP loss risk to
floods

Baseline – Value MME,
MMS

2030s
2050s

RCP4.5-SSP2
RCP8.5-SSP3

Value,
Change

MME,
MMS

Note Value = the value for the current period (baseline, 2030s, or 2050s); change = the change between 2030s/2050s and the baseline period;
MME = multi-model mean; MMS = uncertain of the multi-model; RCP = Representative Concentration Pathway; SSP = Shared Socioeconomic
Pathway.
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0.25° � 0.25°. All maps on the platform use the project of
EPSG 4326 (the World Geodetic System 1984).

The platform enables map query, browsing and roaming,
zoom in and out, map download, data display, data query,

data download, and layer color manipulation (Fig. F.1).
Compared with traditional paper maps, the platform is
dynamic and interactive. More information about the plat-
form can be found at http://www.grisk.info.

Fig. F.1 Global change risk map platform of population and economic systems
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